ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 9 n° 9Paru le : 01/09/2020 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierOSMWatchman: Learning how to detect vandalized contributions in OSM using a Random Forest classifier / Quy Thy Truong in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
[article]
Titre : OSMWatchman: Learning how to detect vandalized contributions in OSM using a Random Forest classifier Type de document : Article/Communication Auteurs : Quy Thy Truong , Auteur ; Guillaume Touya , Auteur ; Cyril de Runz, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 504 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cartographie collaborative
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données localisées des bénévoles
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des donnéesRésumé : (auteur) Though Volunteered Geographic Information (VGI) has the advantage of providing free open spatial data, it is prone to vandalism, which may heavily decrease the quality of these data. Therefore, detecting vandalism in VGI may constitute a first way of assessing the data in order to improve their quality. This article explores the ability of supervised machine learning approaches to detect vandalism in OpenStreetMap (OSM) in an automated way. For this purpose, our work includes the construction of a corpus of vandalism data, given that no OSM vandalism corpus is available so far. Then, we investigate the ability of random forest methods to detect vandalism on the created corpus. Experimental results show that random forest classifiers perform well in detecting vandalism in the same geographical regions that were used for training the model and has more issues with vandalism detection in “unfamiliar regions”. Numéro de notice : A2020-507 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090504 Date de publication en ligne : 22/08/2020 En ligne : https://doi.org/10.3390/ijgi9090504 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95682
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - n° 504[article]Method for generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces / Qingxiang Chen in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
[article]
Titre : Method for generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces Type de document : Article/Communication Auteurs : Qingxiang Chen, Auteur ; Jing Chen, Auteur ; Wumeng Huang, Auteur Année de publication : 2020 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] adjacence
[Termes IGN] CityGML
[Termes IGN] espace intérieur
[Termes IGN] indoorGML
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] requête spatialeRésumé : (auteur) Methods for the generation of indoor geographic information system (GIS) models based on building information modelling (BIM) models can promote the analysis and application of indoor GIS, avoiding the complexity of traditional indoor space collection. The indoor adjacency relations (i.e., the attribute of IndoorGML) play a vital role in the adjacent query and analysis in indoor GIS applications (i.e., obtaining the neighbors or affected spaces of a cellular space in a building). However, current methods ignore the important feature, which considerably limits the spatial analysis ability of indoor GIS. Therefore, we developed a method for the generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces. The method first devised an indoor GIS model (IGSM) by integrating spatial features (mainly adjacency relations) and the BIM model. Then, we proposed rapid modeling algorithms to mainly establish indoor adjacency relations based on the IGSM. Moreover, in the potential application of indoor GIS (e.g., indoor emergency response), we proposed a K-adjacent analysis algorithm to improve the application ability of the adjacent analysis of indoor GIS. Finally, experimental results suggest its validity and efficiency, which has substantial practical significance for the subsequent analysis and application of 3D GIS. Numéro de notice : A2020-662 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090508 Date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.3390/ijgi9090508 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96138
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 24 p.[article]Using OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
[article]
Titre : Using OpenStreetMap data and machine learning to generate socio-economic indicators Type de document : Article/Communication Auteurs : Daniel Feldmeyer, Auteur ; Claude Meisch, Auteur ; Holger Sauter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] arbre aléatoire
[Termes IGN] base de données spatiotemporelles
[Termes IGN] changement climatique
[Termes IGN] chômage
[Termes IGN] classification par réseau neuronal
[Termes IGN] collectivité territoriale
[Termes IGN] données localisées des bénévoles
[Termes IGN] données socio-économiques
[Termes IGN] inégalité
[Termes IGN] limite administrative
[Termes IGN] modèle de régression
[Termes IGN] modèle de simulation
[Termes IGN] OpenStreetMapRésumé : (auteur) Socio-economic indicators are key to understanding societal challenges. They disassemble complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have been developed to describe sustainability, human development, vulnerability, risk, resilience and climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring. Socio-economic indicators are mostly provided by governmental institutions and are therefore limited to administrative boundaries. Furthermore, different methodological computation approaches for the same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly, the potential of OSM seems largely unexplored in this context. In this study, we used machine learning to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the predictive power of neural networks to statistical regression models, we evaluated the unhinged resources of OSM for indicator development. OSM provides prospects for monitoring across administrative boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further research is still required to, for example, determine the impact of regional and international differences in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into otherwise unknown spatial differences in social, environmental or economic inequalities. Numéro de notice : A2020-663 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090498 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.3390/ijgi9090498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96139
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 16 p.[article]