Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 86 n° 9Paru le : 01/09/2020 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2020091 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierHeliport detection using artificial neural networks / Emre Baseski in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Heliport detection using artificial neural networks Type de document : Article/Communication Auteurs : Emre Baseski, Auteur Année de publication : 2020 Article en page(s) : pp 541-546 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] hélicoptère
[Termes IGN] image à haute résolution
[Termes IGN] réseau neuronal artificiel
[Termes IGN] zone militaireRésumé : (Auteur) Automatic image exploitation is a critical technology for quick content analysis of high-resolution remote sensing images. The presence of a heliport on an image usually implies an important facility, such as military facilities. Therefore, detection of heliports can reveal critical information about the content of an image. In this article, two learning-based algorithms are presented that make use of artificial neural networks to detect H-shaped, light-colored heliports. The first algorithm is based on shape analysis of the heliport candidate segments using classical artificial neural networks. The second algorithm uses deep-learning techniques. While deep learning can solve difficult problems successfully, classical-learning approaches can be tuned easily to obtain fast and reasonable results. Therefore, although the main objective of this article is heliport detection, it also compares a deep-learning based approach with a classical learning-based approach and discusses advantages and disadvantages of both techniques. Numéro de notice : A2020-439 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.541 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.541 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95929
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 541-546[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization Type de document : Article/Communication Auteurs : Hasan Tonbul, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2020 Article en page(s) : pp 547-555 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de variance
[Termes IGN] carte d'occupation du sol
[Termes IGN] détection du bâti
[Termes IGN] extraction semi-automatique
[Termes IGN] image Worldview
[Termes IGN] optimisation (mathématiques)
[Termes IGN] rapport signal sur bruit
[Termes IGN] régression linéaire
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (Auteur) Due to the complex spectral and spatial structures of remotely sensed images, the delineation of land use/land cover classes using conventional approaches is a challenging task. This article tackles the problem of seeking optimal parameters of multi-resolution segmentation for a classification task using WorldView-2 imagery. Taguchi optimization was applied to search optimal parameters using the plateau objective function (POF) and quality rate (Qr) as fitness criteria. Analysis of variance was also used to estimate the contributions of the parameters for POF and Qr, separately. The scale parameter was the most effective one, with contribution levels of 87.45% and 56.87% for POF and Qr, respectively. Linear regression and support-vector regression methods were used to predict the results of the experiment. Test results revealed that Taguchi optimization was more effective than linear regression and support-vector regression for predicting POF and Qr values. Numéro de notice : A2020-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.547 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.547 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95931
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 547-555[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Asli Ozdarici-Ok, Auteur Année de publication : 2020 Article en page(s) : pp 557-569 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse de groupement
[Termes IGN] Citrus limon
[Termes IGN] détection de contours
[Termes IGN] état de l'art
[Termes IGN] extraction d'arbres
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stochastique
[Termes IGN] TurquieRésumé : (Auteur) In this study, we present an original unified strategy for the precise extraction of individual citrus fruit trees from single digital surface model (DSM) input data. A probabilistic method combining the circular shape information with the knowledge of the local maxima in the DSM has been used for the detection of the candidate trees. An active contour is applied within each detected region to extract the borders of the objects. Thereafter, all extracted objects are seamlessly divided into clusters considering a new feature data set formed by (1) the properties of trees, (2) planting parameters, and (3) neighborhood relations. This original clustering stage has led to two new contributions: (1) particular objects or clustered structures having distinctive characters and relationships other than the citrus objects can be identified and eliminated, and (2) the information revealed by clustering can be used to recover missing citrus objects within and/or nearby each cluster. The main finding of this research is that a successful clustering can provide valuable input for identifying incorrect and missing information in terms of citrus tree extraction. The proposed strategy is validated in eight test sites selected from the northern part of Mersin province of Turkey. The results achieved are also compared with the state-of-the-art methods developed for tree extraction, and the success of the proposed unified strategy is clearly highlighted. Numéro de notice : A2020-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.557 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.557 Format de la ressource électronique : LUR article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95933
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 557-569[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible