Descripteur
Documents disponibles dans cette catégorie (335)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Linking structure and species richness to support forest biodiversity monitoring at large scales / Félix Storch in Annals of Forest Science, vol 80 n° 1 (2023)
[article]
Titre : Linking structure and species richness to support forest biodiversity monitoring at large scales Type de document : Article/Communication Auteurs : Félix Storch, Auteur ; Steffen Boch, Auteur ; Martin M. Gossner, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biodiversité végétale
[Termes IGN] botanique systématique
[Termes IGN] écosystème forestier
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement mélangé
[Termes IGN] protection de la biodiversité
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surveillance de la végétation
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Key message: Authors have analyzed the possible correlation between measurements/indicators of forest structure and species richness of many taxonomic or functional groups over three regions of Germany. Results show the potential to use structural attributes as a surrogate for species richness of most of the analyzed taxonomic and functional groups. This information can be transferred to large-scale forest inventories to support biodiversity monitoring.
Context: We are currently facing a dramatic loss in biodiversity worldwide and this initiated many monitoring programs aiming at documenting further trends. However, monitoring species diversity directly is very resource demanding, in particular in highly diverse forest ecosystems.
Aims: We investigated whether variables applied in an index of stand structural diversity, which was developed based on forest attributes assessed in the German National Forest Inventory, can be calibrated against richness of forest-dwelling species within a wide range of taxonomic and functional groups.
Methods: We used information on forest structure and species richness that has been comprehensively assessed on 150 forest plots of the German biodiversity exploratories project, comprising a large range of management intensities in three regions. We tested, whether the forest structure index calculated for these forest plots well correlate with the number of species across 29 taxonomic and functional groups, assuming that the structural attributes applied in the index represent their habitat requirements.
Results: The strength of correlations between the structural variables applied in the index and number of species within taxonomic or functional groups was highly variable. For some groups such as Aves, Formicidae or vascular plants, structural variables had a high explanatory power for species richness across forest types. Species richness in other taxonomic and functional groups (e.g., soil and root-associated fungi) was not explained by individual structural attributes of the index. Results indicate that some taxonomic and functional groups depend on a high structural diversity, whereas others seem to be insensitive to it or even prefer structurally poor stands.
Conclusion: Therefore, combinations of forest stands with different degrees of structural diversity most likely optimize taxonomic diversity at the landscape level. Our results can support biodiversity monitoring through quantification of forest structure in large-scale forest inventories. Changes in structural variables over inventory periods can indicate changes in habitat quality for individual taxonomic groups and thus points towards national forest inventories being an effective tool to detect unintended effects of changes in forest management on biodiversity.Numéro de notice : A2023-144 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01169-1 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1186/s13595-022-01169-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102720
in Annals of Forest Science > vol 80 n° 1 (2023) . - n° 3[article]Evenness mediates the global relationship between forest productivity and richness / Iris Hordijk in Journal of ecology, vol inconnu (2023)
[article]
Titre : Evenness mediates the global relationship between forest productivity and richness Type de document : Article/Communication Auteurs : Iris Hordijk, Auteur ; Daniel S. Maynard, Auteur ; et al., Auteur ; Olivier Bouriaud , Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] forêt
[Termes IGN] futaie irrégulière
[Termes IGN] futaie régulière
[Termes IGN] productivité biologique
[Termes IGN] richesse floristique
[Vedettes matières IGN] ForesterieRésumé : (auteur) 1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.
2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.
3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.
4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.Numéro de notice : A2023-093 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1111/1365-2745.14098 Date de publication en ligne : 02/05/2023 En ligne : https://doi.org/10.1111/1365-2745.14098 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103184
in Journal of ecology > vol inconnu (2023)[article]Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests / Joscha H. Menge in Landscape ecology, vol 38 n° 4 (April 2023)
[article]
Titre : Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests Type de document : Article/Communication Auteurs : Joscha H. Menge, Auteur ; Paul Magdon, Auteur ; Stephan Wöllauer, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 903 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] écosystème forestier
[Termes IGN] Fagus (genre)
[Termes IGN] forêt équienne
[Termes IGN] forêt inéquienne
[Termes IGN] gestion forestière
[Termes IGN] hêtraie
[Termes IGN] microclimat
[Termes IGN] régression multiple
[Termes IGN] semis de points
[Termes IGN] température de l'air
[Termes IGN] ThuringeRésumé : (auteur) Context: Forest microclimate influences biodiversity and plays a crucial role in regulating forest ecosystem functions. It is modified by forest management as a result of changes in forest structure due to tree harvesting and thinning.
Objectives: Here, we investigate the impacts of even-aged and uneven-aged forest management on stand- and landscape-level heterogeneity of forest microclimates, in comparison with unmanaged, old-growth European beech forest.
Methods: We combined stand structural and topographical indices derived from airborne laser scanning with climate observations from 23 meteorological stations at permanent forest plots within the Hainich region, Germany. Based on a multiple linear regression model, we spatially interpolated the diurnal temperature range (DTR) as an indicator of forest microclimate across a 4338 ha section of the forest with 50 m spatial resolution. Microclimate heterogeneity was measured as α-, β-, and γ-diversity of thermal niches (i.e. DTR classes).
Results: Even-aged forests showed a higher γ-diversity of microclimates than uneven-aged and unmanaged forests. This was mainly due to a higher β-diversity resulting from the spatial coexistence of different forest developmental stages within the landscape. The greater structural complexity at the stand-level in uneven-aged stands did not increase α-diversity of microclimates. Predicted DTR was significantly lower and spatially more homogenous in unmanaged forest compared to both types of managed forest.
Conclusion: If forest management aims at creating a wide range of habitats with different microclimates within a landscape, spatially co-existing types of differently managed and unmanaged forests should be considered, instead of focusing on a specific type of management, or setting aside forest reserves only.Numéro de notice : A2023-224 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10980-023-01596-z Date de publication en ligne : 30/01/2023 En ligne : https://doi.org/10.1007/s10980-023-01596-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103175
in Landscape ecology > vol 38 n° 4 (April 2023) . - pp 903 - 917[article]Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties / Eelis Halme in Silva fennica, vol 57 n° 2 (April 2023)
[article]
Titre : Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties Type de document : Article/Communication Auteurs : Eelis Halme, Auteur ; Matti Mõttus, Auteur Année de publication : 2023 Article en page(s) : n° 22028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] densité du peuplement
[Termes IGN] diagnostic foliaire
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle de croissance végétale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] réflectance végétale
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Physically-based reflectance models offer a robust and transferable method to assess biophysical characteristics of vegetation in remote sensing. Forests exhibit explicit structure at many scales, from shoots and branches to landscape patches, and hence present a specific challenge to vegetation reflectance modellers. To relate forest reflectance with its structure, the complexity must be parametrised leading to an increase in the number of reflectance model inputs. The parametrisations link reflectance simulations to measurable forest variables, but at the same time rely on abstractions (e.g. a geometric surface forming a tree crown) and physically-based simplifications that are difficult to quantify robustly. As high-quality data on basic forest structure (e.g. tree height and stand density) and optical properties (e.g. leaf and forest floor reflectance) are becoming increasingly available, we used the well-validated forest reflectance and transmittance model FRT to investigate the effect of the values of the “uncertain” input parameters on the accuracy of modelled forest reflectance. With the state-of-the-art structural and spectral forest information, and Sentinel-2 Multispectral Instrument imagery, we identified that the input parameters influencing the most the modelled reflectance, given that the basic forestry variables are set to their true values and leaf mass is determined from reliable allometric models, are the regularity of the tree distribution and the amount of woody elements. When these parameters were set to their new adjusted values, the model performance improved considerably, reaching in the near infrared spectral region (740–950 nm) nearly zero bias, a relative RMSE of 13% and a correlation coefficient of 0.81. In the visible part of the spectrum, the model performance was not as consistent indicating room for improvement. Numéro de notice : A2023-228 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.22028 Date de publication en ligne : 30/05/2023 En ligne : https://doi.org/10.14214/sf.22028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103260
in Silva fennica > vol 57 n° 2 (April 2023) . - n° 22028[article]Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium / Sonja Vospernik in Forest ecology and management, vol 530 (February-15 2023)
[article]
Titre : Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium Type de document : Article/Communication Auteurs : Sonja Vospernik, Auteur ; Michael Heym, Auteur ; Hans Pretzsch, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120753 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] climat
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Europe (géographie politique)
[Termes IGN] évapotranspiration
[Termes IGN] forêt inéquienne
[Termes IGN] modèle dynamique
[Termes IGN] peuplement mélangé
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus pedunculata
[Termes IGN] Quercus sessiliflora
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Quercus robur/Quercus petraea and Pinus sylvestris are widely distributed and economically important tree species in Europe co-occurring on mesotrophic, xeric and mesic sites. Increasing dry conditions may reduce their growth, but growth reductions may be modified by mixture, competition and site conditions. The annual diameter growth in monospecific and mixed stands along an ecological gradient with mean annual temperatures ranging from 5.5 °C to 11.5 °C was investigated in this study. On 36 triplets (108 plots), trees were cored and the year-ring series were cross-dated, resulting in year-ring series of 785 and 804 trees for Q. spp. and P. sylvestris, respectively. A generalized additive model with a logarithmic link was fit to the data with random effects for the intercept at the triplet, year and tree level and a random slope for the covariate age for each tree; the Tweedie-distribution was used. The final model explained 87 % of the total variation in diameter increment for both tree species. Significant covariates were age, climate variables (long-term mean, monthly), local competition variables, relative dbh, mixture, stand structure and interactions thereof. Tree growth declined with age and local density and increased with social position. It was positively influenced by mixture and structural diversity (Gini coefficient); mixture effects were significant for P. sylvestris only. The influence of potential evapotranspiration (PET) in spring and autumn on tree growth was positive and non-linear, whereas tree growth sharply decreased with increasing PET in June, which proved to be the most influential month on tree growth along the whole ecological gradient. Interactions of PET with tree social position (relative dbh) were significant in July and September for Q. spp. and in April for P. sylvestris. Interactions of climate with density or mixture were not significant. Climatic effects found agree well with previous results from intra-annual growth studies and indicate that the model captures the causal factors for tree growth well. Furthermore, the interaction between climate and relative dbh might indicate a longer growth duration for trees of higher social classes. Analysis of random effects across time and space showed highly dynamic patterns, with competitive advantages changing annually between species and spatial patterns showing no large-scale trends but pointing to the prevalence of local site factors. In mixed-species stands, the tree species have the same competitivity in the long-term, which is modified by climate each year. Climate warming will shift the competitive advantages, but the direction will be highly site-specific. Numéro de notice : A2023-108 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120753 Date de publication en ligne : 29/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102443
in Forest ecology and management > vol 530 (February-15 2023) . - n° 120753[article]Can mixed forests sequester more CO2 than pure forests in future climate scenarios? A case study of Pinus sylvestris combinations in Spain / Diego Rodríguez de Prado in European Journal of Forest Research, vol 142 n° 1 (February 2023)PermalinkEvaluation of growth models for mixed forests used in Swedish and Finnish decision support systems / Jorge Aldea in Forest ecology and management, vol 529 (February-1 2023)PermalinkForest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought / Antonios Apostolakis in Forests, vol 14 n° 2 (February 2023)PermalinkSpecies-specific deadwood density, its controlling factors and its role in the estimation of deadwood C stock of a Virgin European Beech-Silver Fir Mixed Forest in the Southern Carpathians / Ion Catalin Petritan in SSRN [preprint electronic journal], vol 2023 ([01/02/2023])PermalinkStochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data / Parvez Rana in Landscape and Urban Planning, vol 230 (February 2023)PermalinkTesting the application of process-based forest growth model PREBAS to uneven-aged forests in Finland / Man Hu in Forest ecology and management, vol 529 (February-1 2023)PermalinkModelling the dynamics of Pinus sylvestris forests after a die-off event under climate change scenarios / Jordi Margalef- Marrase in Science of the total environment, vol 856 n° 2 (January 2023)PermalinkImproving generalized models of forest structure in complex forest types using area- and voxel-based approaches from lidar / Andrew W. Whelan in Remote sensing of environment, vol 284 (January 2023)PermalinkManagement of birch spruce mixed stands with consideration of carbon stock in biomass and harvested wood products / Jānis Vuguls in Forests, vol 14 n° 1 (January 2023)PermalinkPrescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires / Lena Vilà-Vilardell in Forest ecology and management, vol 527 (January-1 2023)Permalink