Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Gymnosperme > Pinophyta > Pinaceae > Pinus (genre) > Pinus banksiana
Pinus banksianaSynonyme(s)pin gris |
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework / H. Croft in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
[article]
Titre : Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework Type de document : Article/Communication Auteurs : H. Croft, Auteur ; Jing M. Chen, Auteur ; Y. Zhang, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 85 - 95 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Acer saccharum
[Termes IGN] aiguille
[Termes IGN] image Landsat-TM
[Termes IGN] indice de stress
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] Picea mariana
[Termes IGN] Pinus banksiana
[Termes IGN] Populus tremuloides
[Termes IGN] réflectance végétale
[Termes IGN] surveillance forestière
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Accurate modelling of leaf chlorophyll content over a range of spatial and temporal scales is central to monitoring vegetation stress and physiological condition, and vegetation response to different ecological, climatic and anthropogenic drivers. A process-based modelling approach can account for variation in other factors affecting canopy reflectance, providing a more accurate estimate of chlorophyll content across different vegetation species, time-frames, and broader spatial extents. However, physically-based modelling studies usually use hyperspectral data, neglecting a wealth of data from broadband and multispectral sources. In this study, we assessed the potential for using canopy (4-Scale) and leaf radiative transfer (PROSPECT4/5) models to estimate leaf chlorophyll content using canopy Landsat satellite data and simulated Landsat bands from leaf level hyperspectral reflectance data. Over 600 leaf samples were used to test the performance of PROSPECT for different vegetation species, including black spruce (Picea mariana), sugar maple (Acer saccharum), trembling aspen (Populus tremuloides) and jack pine (Pinus banksiana). At the leaf level, hyperspectral and simulated Landsat bands showed very similar results to laboratory measured chlorophyll (R2 = 0.77 and R2 = 0.75, respectively). Comparisons between PROSPECT4 modelled chlorophyll from simulated Landsat and hyperspectral spectra showed a very close correspondence (R2 = 0.97, root mean square error (RMSE) = 3.01 μg/cm2), as did simulated reflectance bands from other broadband and narrowband sensors (MODIS: R2 = 0.99, RMSE = 1.80 μg/cm2; MERIS: R2 = 0.97, RMSE = 2.50 μg/cm2 and SPOT5 HRG: R2 = 0.96, RMSE = 5.38 μg/cm2). Modelled leaf chlorophyll content from Landsat 5 TM canopy reflectance data, acquired from over 40 ground validation sites, demonstrated a strong relationship with measured leaf chlorophyll content (R2 = 0.78, RMSE = 8.73 μg/cm2, p Numéro de notice : A2015-691 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.01.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.01.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78326
in ISPRS Journal of photogrammetry and remote sensing > vol 102 (April 2015) . - pp 85 - 95[article]