Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond
apprentissage profond |
Documents disponibles dans cette catégorie (759)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)
[article]
Titre : Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope Type de document : Article/Communication Auteurs : V.S. Martins, Auteur ; D.P. Roy, Auteur ; H. Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113203 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique (géographie politique)
[Termes IGN] apprentissage profond
[Termes IGN] carte thématique
[Termes IGN] cartographie automatique
[Termes IGN] correction radiométrique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image PlanetScope
[Termes IGN] incendie
[Termes IGN] précision de la classification
[Termes IGN] régression
[Termes IGN] savaneRésumé : (auteur) High spatial resolution commercial satellite data provide new opportunities for terrestrial monitoring. The recent availability of near-daily 3 m observations provided by the PlanetScope constellation enables mapping of small and spatially fragmented burns that are not detected at coarser spatial resolution. This study demonstrates, for the first time, the potential for automated PlanetScope 3 m burned area mapping. The PlanetScope sensors have no onboard calibration or short-wave infrared bands, and have variable overpass times, making them challenging to use for large area, automated, burned area mapping. To help overcome these issues, a U-Net deep learning algorithm was developed to classify burned areas from two-date Planetscope 3 m image pairs acquired at the same location. The deep learning approach, unlike conventional burned area mapping algorithms, is applied to image spatial subsets and not to single pixels and so incorporates spatial as well as spectral information. Deep learning requires large amounts of training data. Consequently, transfer learning was undertaken using pre-existing Landsat-8 derived burned area reference data to train the U-Net that was then refined with a smaller set of PlanetScope training data. Results across Africa considering 659 PlanetScope radiometrically normalized image pairs sensed one day apart in 2019 are presented. The U-Net was first trained with different numbers of randomly selected 256 × 256 30 m pixel patches extracted from 92 pre-existing Landsat-8 burned area reference data sets defined for 2014 and 2015. The U-Net trained with 300,000 Landsat patches provided about 13% 30 m burn omission and commission errors with respect to 65,000 independent 30 m evaluation patches. The U-Net was then refined by training on 5,000 256 × 256 3 m patches extracted from independently interpreted PlanetScope burned area reference data. Qualitatively, the refined U-Net was able to more precisely delineate 3 m burn boundaries, including the interiors of unburned areas, and better classify “faint” burned areas indicative of low combustion completeness and/or sparse burns. The refined U-Net 3 m classification accuracy was assessed with respect to 20 independently interpreted PlanetScope burned area reference data sets, composed of 339.4 million 3 m pixels, with low 12.29% commission and 12.09% omission errors. The dependency of the U-Net classification accuracy on the burned area proportion within 3 m pixel 256 × 256 patches was also examined, and patches Numéro de notice : A2022-774 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113203 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101802
in Remote sensing of environment > vol 280 (October 2022) . - n° 113203[article]DSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images / Jiawei Jiang in Remote sensing, vol 14 n° 19 (October-1 2022)
[article]
Titre : DSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images Type de document : Article/Communication Auteurs : Jiawei Jiang, Auteur ; Yuanjun Xing, Auteur ; Wei Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5046 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] réseau neuronal siamois
[Termes IGN] ressources forestièresRésumé : (auteur) The use of remote sensing images to detect forest changes is of great significance for forest resource management. With the development and implementation of deep learning algorithms in change detection, a large number of models have been designed to detect changes in multi-phase remote sensing images. Although synthetic aperture radar (SAR) data have strong potential for application in forest change detection tasks, most existing deep learning-based models have been designed for optical imagery. Therefore, to effectively combine optical and SAR data in forest change detection, this paper proposes a double Siamese branch-based change detection network called DSNUNet. DSNUNet uses two sets of feature branches to extract features from dual-phase optical and SAR images and employs shared weights to combine features into groups. In the proposed DSNUNet, different feature extraction branch widths were used to compensate for a difference in the amount of information between optical and SAR images. The proposed DSNUNet was validated by experiments on the manually annotated forest change detection dataset. According to the obtained results, the proposed method outperformed other change detection methods, achieving an F1-score of 76.40%. In addition, different combinations of width between feature extraction branches were analyzed in this study. The results revealed an optimal performance of the model at initial channel numbers of the optical imaging branch and SAR image branch of 32 and 8, respectively. The prediction results demonstrated the effectiveness of the proposed method in accurately predicting forest changes and suppressing cloud interferences to some extent. Numéro de notice : A2022-772 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14195046 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.3390/rs14195046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101800
in Remote sensing > vol 14 n° 19 (October-1 2022) . - n° 5046[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Estimating urban functional distributions with semantics preserved POI embedding Type de document : Article/Communication Auteurs : Weiming Huang, Auteur ; Lizhen Cui, Auteur ; Meng Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1905 - 1930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] Chine
[Termes IGN] classe sémantique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] lissage de données
[Termes IGN] matrice de co-occurrence
[Termes IGN] Perceptron multicouche
[Termes IGN] point d'intérêt
[Termes IGN] triangulation de Delaunay
[Termes IGN] zone urbaineRésumé : (auteur) We present a novel approach for estimating the proportional distributions of function types (i.e. functional distributions) in an urban area through learning semantics preserved embeddings of points-of-interest (POIs). Specifically, we represent POIs as low-dimensional vectors to capture (1) the spatial co-occurrence patterns of POIs and (2) the semantics conveyed by the POI hierarchical categories (i.e. categorical semantics). The proposed approach utilizes spatially explicit random walks in a POI network to learn spatial co-occurrence patterns, and a manifold learning algorithm to capture categorical semantics. The learned POI vector embeddings are then aggregated to generate regional embeddings with long short-term memory (LSTM) and attention mechanisms, to take account of the different levels of importance among the POIs in a region. Finally, a multilayer perceptron (MLP) maps regional embeddings to functional distributions. A case study in Xiamen Island, China implements and evaluates the proposed approach. The results indicate that our approach outperforms several competitive baseline models in all evaluation measures, and yields a relatively high consistency between the estimation and ground truth. In addition, a comprehensive error analysis unveils several intrinsic limitations of POI data for this task, e.g. ambiguous linkage between POIs and functions. Numéro de notice : A2022-738 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2040510 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2040510 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101714
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 1905 - 1930[article]Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks / Abdelkrim Bouasria in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks Type de document : Article/Communication Auteurs : Abdelkrim Bouasria, Auteur ; Khalid Ibno Namra, Auteur ; Abdelmejid Rahimi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 353 - 364 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] état du sol
[Termes IGN] image Landsat-OLI
[Termes IGN] image panchromatique
[Termes IGN] Maroc
[Termes IGN] matière organique
[Termes IGN] modèle de simulation
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] Perceptron multicouche
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) In agricultural systems, the regular monitoring of Soil Organic Matter (SOM) dynamics is essential. This task is costly and time-consuming when using the conventional method, especially in a very fragmented area and with intensive agricultural activity, such as the area of Sidi Bennour. The study area is located in the Doukkala irrigated perimeter in Morocco. Satellite data can provide an alternative and fill this gap at a low cost. Models to predict SOM from a satellite image, whether linear or nonlinear, have shown considerable interest. This study aims to compare SOM prediction using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). A total of 368 points were collected at a depth of 0–30 cm and analyzed in the laboratory. An image at 15 m resolution (MSPAN) was produced from a 30 m resolution (MS) Landsat-8 image using image pansharpening processing and panchromatic band (15 m). The results obtained show that the MLR models predicted the SOM with (training/validation) R2 values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images, respectively. In contrast, the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images, respectively. Image pansharpening improved the prediction accuracy by 2.60% and 4.30% and reduced the estimation error by 0.80% and 1.30% for the MLR and ANN models, respectively. Numéro de notice : A2022-722 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2026743 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2026743 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101665
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 353 - 364[article]Incremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)
[article]
Titre : Incremental road network update method with trajectory data and UAV remote sensing imagery Type de document : Article/Communication Auteurs : Jianxin Qin, Auteur ; Wenjie Yang, Auteur ; Tao Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 502 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] données spatiotemporelles
[Termes IGN] extraction du réseau routier
[Termes IGN] image captée par drone
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle de Markov caché
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] trace au solRésumé : (auteur) GPS trajectory and remote sensing data are crucial for updating urban road networks because they contain critical spatial and temporal information. Existing road network updating methods, whether trajectory-based (TB) or image-based (IB), do not integrate the characteristics of both types of data. This paper proposed and implemented an incremental update method for rapid road network checking and updating. A composite update framework for road networks is established, which integrates trajectory data and UAV remote sensing imagery. The research proposed utilizing connectivity between adjacent matched points to solve the problem of updating problematic road segments in networks based on the features of the Hidden Markov Model (HMM) map-matching method in identifying new road segments. Deep learning is used to update the local road network in conjunction with the flexible and high-precision characteristics of UAV remote sensing. Additionally, the proposed method is evaluated against two baseline methods through extensive experiments based on real-world trajectories and UAV remote sensing imagery. The results show that our method has higher extraction accuracy than the TB method and faster updates than the IB method. Numéro de notice : A2022-791 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi11100502 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.3390/ijgi11100502 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101904
in ISPRS International journal of geo-information > vol 11 n° 10 (October 2022) . - n° 502[article]Investigating the efficiency of deep learning methods in estimating GPS geodetic velocity / Omid Memarian Sorkhabi in Earth and space science, vol 9 n° 10 (October 2022)PermalinkA relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)PermalinkSemi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling / Han Hu in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)PermalinkSingle-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms / Yadong Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)PermalinkSpatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions / Di Zhu in Geoinformatica, vol 26 n° 4 (October 2022)PermalinkSpatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)PermalinkThe fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)PermalinkComparison of deep neural networks in detecting field grapevine diseases using transfer learning / Antonios Morellos in Remote sensing, vol 14 n° 18 (September-2 2022)PermalinkAn improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds / Chaoquan Zhang in Photogrammetric record, vol 37 n° 179 (September 2022)PermalinkCrowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images / Ekrem Saralioglu in Geocarto international, vol 37 n° 18 ([01/09/2022])Permalink