Descripteur
Documents disponibles dans cette catégorie (315)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Linking structure and species richness to support forest biodiversity monitoring at large scales / Félix Storch in Annals of Forest Science, vol 80 n° 1 (2023)
[article]
Titre : Linking structure and species richness to support forest biodiversity monitoring at large scales Type de document : Article/Communication Auteurs : Félix Storch, Auteur ; Steffen Boch, Auteur ; Martin M. Gossner, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biodiversité végétale
[Termes IGN] botanique systématique
[Termes IGN] écosystème forestier
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement mélangé
[Termes IGN] protection de la biodiversité
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surveillance de la végétation
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Key message: Authors have analyzed the possible correlation between measurements/indicators of forest structure and species richness of many taxonomic or functional groups over three regions of Germany. Results show the potential to use structural attributes as a surrogate for species richness of most of the analyzed taxonomic and functional groups. This information can be transferred to large-scale forest inventories to support biodiversity monitoring.
Context: We are currently facing a dramatic loss in biodiversity worldwide and this initiated many monitoring programs aiming at documenting further trends. However, monitoring species diversity directly is very resource demanding, in particular in highly diverse forest ecosystems.
Aims: We investigated whether variables applied in an index of stand structural diversity, which was developed based on forest attributes assessed in the German National Forest Inventory, can be calibrated against richness of forest-dwelling species within a wide range of taxonomic and functional groups.
Methods: We used information on forest structure and species richness that has been comprehensively assessed on 150 forest plots of the German biodiversity exploratories project, comprising a large range of management intensities in three regions. We tested, whether the forest structure index calculated for these forest plots well correlate with the number of species across 29 taxonomic and functional groups, assuming that the structural attributes applied in the index represent their habitat requirements.
Results: The strength of correlations between the structural variables applied in the index and number of species within taxonomic or functional groups was highly variable. For some groups such as Aves, Formicidae or vascular plants, structural variables had a high explanatory power for species richness across forest types. Species richness in other taxonomic and functional groups (e.g., soil and root-associated fungi) was not explained by individual structural attributes of the index. Results indicate that some taxonomic and functional groups depend on a high structural diversity, whereas others seem to be insensitive to it or even prefer structurally poor stands.
Conclusion: Therefore, combinations of forest stands with different degrees of structural diversity most likely optimize taxonomic diversity at the landscape level. Our results can support biodiversity monitoring through quantification of forest structure in large-scale forest inventories. Changes in structural variables over inventory periods can indicate changes in habitat quality for individual taxonomic groups and thus points towards national forest inventories being an effective tool to detect unintended effects of changes in forest management on biodiversity.Numéro de notice : A2023-144 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01169-1 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1186/s13595-022-01169-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102720
in Annals of Forest Science > vol 80 n° 1 (2023) . - n° 3[article]Forests attenuate temperature and air pollution discomfort in montane tourist areas / Elena Gottardini in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Forests attenuate temperature and air pollution discomfort in montane tourist areas Type de document : Article/Communication Auteurs : Elena Gottardini, Auteur ; Fabiana Cristofolini, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 545 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] bien-être collectif
[Termes IGN] forêt alpestre
[Termes IGN] Italie
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] service écosystémique
[Termes IGN] température de l'air
[Termes IGN] tourisme
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Forests deliver many ecosystem services, from provisioning to regulating and cultural services. We aimed at demonstrating microclimatic regulation and pollutant removal as especially relevant ecosystem services when considering the tourism vocation of the Alpine regions. A study was realized along an altitudinal gradient (900–1600 m a.s.l.) in Trentino, northern Italy, an area with high touristic presence (ca. 9.3 million overnight stays in summer 2021). Nitrogen dioxide (NO2, µg m−3), ozone (O3, µg m−3) concentrations, air temperature (T, °C), and relative humidity (RH, %) were simultaneously measured in three open-field sites (OF) and below-canopy Norway spruce forest stands (FO) during the period 23 May–7 August 2013. The temperature–humidity index (THI) was calculated. We found a distinct mitigating effect of forest on T, with lower maximum (−30.6%) and higher minimum values (+6.3%) in FO than in OF. THI supported a higher comfort sensation in FO than in OF, especially in the central part of the day. NO2 concentrations did not differ between OF and FO; ozone concentrations were lower in FO than OF. This study confirms the role of forests in providing several ecosystem services beneficial for forest users, especially relevant for promoting nature-based tourism in the Alpine region. Numéro de notice : A2023-168 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030545 Date de publication en ligne : 10/03/2023 En ligne : https://doi.org/10.3390/f14030545 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102905
in Forests > vol 14 n° 3 (March 2023) . - n° 545[article]Resilience of Pyrenean forests after recurrent historical deforestations / Valenti Rull in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Resilience of Pyrenean forests after recurrent historical deforestations Type de document : Article/Communication Auteurs : Valenti Rull, Auteur ; Teresa Vegas-Vilarrúbia, Auteur Année de publication : 2023 Article en page(s) : n° 567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] déboisement
[Termes IGN] forêt méditerranéenne
[Termes IGN] histoire
[Termes IGN] historique des données
[Termes IGN] régénération (sylviculture)
[Termes IGN] résilience écologique
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) The long-term resilience of Pyrenean forests in the face of historical anthropogenic clearing remains largely unknown. In this paper, a high-resolution (decadal to subdecadal) paleoecological study of mid-elevation Pyrenean forests is presented that encompasses the last two millennia. This long-term record was obtained after sediment coring, dating (varve counting) and pollen analysis of annually laminated (varved) sediments from Lake Montcortès, situated at 1027 m elevation, in the transition between the Mediterranean and montane forest belts. This allowed the definition of three major deforestation/recovery cycles during the Roman, Medieval and Modern times. Each DR cycle is characterized considering three different levels: overall forest trends, forest type and individual taxa. Overall, the studied forests exhibited high resilience, as they recovered almost completely after each deforestation event (bulk resilience). The critical point of no return (tipping point) beyond which forests would have irreversibly disappeared from the region was never reached, even after deforestation magnitudes above 60%. The different forest types identified (conifer, sclerophyll and deciduous) persisted over time, showing similar heterogeneous patterns with minor spatial reorganizations (mosaic resilience). Individually, the main forest taxa underwent minor variations in their relative abundances, always within the same attraction domains (community resilience). The high levels of resilience documented in these Pyrenean forests are attributed to the action of metapopulation and metacommunity processes and mechanisms in a highly dynamic patchy environment. Conservation actions should be focused on the maintenance of these spatial patterns and the associated ecological dynamics. Numéro de notice : A2023-166 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030567 Date de publication en ligne : 13/03/2023 En ligne : https://doi.org/10.3390/f14030567 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102903
in Forests > vol 14 n° 3 (March 2023) . - n° 567[article]Species-specific deadwood density, its controlling factors and its role in the estimation of deadwood C stock of a Virgin European Beech-Silver Fir Mixed Forest in the Southern Carpathians / Ion Catalin Petritan in SSRN [preprint electronic journal], vol 2023 ([01/02/2023])
[article]
Titre : Species-specific deadwood density, its controlling factors and its role in the estimation of deadwood C stock of a Virgin European Beech-Silver Fir Mixed Forest in the Southern Carpathians Type de document : Article/Communication Auteurs : Ion Catalin Petritan, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] bois mort
[Termes IGN] Carpates
[Termes IGN] décomposition
[Termes IGN] densité du bois
[Termes IGN] estimation statistique
[Termes IGN] Fagus sylvatica
[Termes IGN] peuplement mélangé
[Termes IGN] puits de carbone
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Deadwood is a fundamental structural and functional component of forests, with a crucial role in supporting the forest biodiversity and nutrient and carbon cycling. Precise deadwood density estimates are necessary to evaluate the biomass and carbon stocked in this component. For a better understanding of the deadwood dynamics in natural forests, given its higher abundance, it is important to achieve deeper knowledge about its decay rate and how it is influenced by environmental factors. In this study, we estimated dry deadwood density for two different tree species, silver fir (Abies alba) and European beech (Fagus sylvatica) and for three snags and five logs decomposition classes (class 1 representing snag/log deadwood at early stages of decomposition and class 3/5 representing snags or logs, respectively, at its most advanced state of decomposition) in a virgin mixed beech-fir forest in the Southern Carpathians. The goal of this study was to assess how deadwood density is influenced by different abiotic (moisture, elevation, slope, aspect) and wood-related factors (rottenness, position of the sampling along the deadwood piece, the contact with the soil).For snags, the mean dry density showed a reduced variability within decomposition classes (484-326 kg.m-3 for beech and 374-319 kg.m-3 for fir), compared to the logs (486-139 kg.m-3 for beech and 359-161 kg.m-3 for fir). While the mass moisture varied slowly in the first three decay classes (around 60-80%), it increased sharply in the last two decay classes of logs (> 140% in the fourth classes and > 350% in the last one). The rottenness increased with the decay degree in a similar way for both species. The contact of logs with the soil influenced positively the moisture of the log, but the position of the sampling along the piece did not play any significant role in the variability of density. The density estimates per decay classes were used to compare the amount of carbon (C) sequestered as deadwood for each species. The mean biomass of C as deadwood at Sinca virgin forest varied greatly among the 21 plots from 0.36 to 41.16 MgC ha-1, with a mean value of 15.96 ± 2.36 (±SE) MgC ha-1.Our study suggests that volume-based calculations might yield biased quantitative estimates of C stored as deadwood unless a local estimate of dead wood density corrected per species and decomposition class is applied. Moreover, using an averaged value of dry density instead of dry density value for each decay class may result in an overestimation of 22% on the estimation of C stock sequestered as deadwood. Thus, our study may also help planning future inventories of C stocks in other virgin forests and for other species, (e.g., make emphasis in estimating densities in all decay classes). Furthermore, it could serve as a methodological basis for more specific research designed to uncover the potential influence of different forest management practices on dry deadwood density. Numéro de notice : A2023-085 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.2139/ssrn.4350235 En ligne : https://dx.doi.org/10.2139/ssrn.4350235 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102857
in SSRN [preprint electronic journal] > vol 2023 [01/02/2023][article]Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)
[article]
Titre : Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Type de document : Article/Communication Auteurs : Arthur Sanguet, Auteur ; Nicolas Wyler, Auteur ; Blaise Petitpierre, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° e02286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] pédologie locale
[Termes IGN] Suisse
[Termes IGN] télédétection
[Termes IGN] topographie locale
[Termes IGN] zone humide
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Species Distribution Models (SDM) represent a powerful tool to predict species’ habitat suitability on a landscape and fill the gap between truncated observation data and all possible locations. SDMs have been widely used in theoretical studies of species niches as well as in conservation applications. Here, we evaluated the impacts of predictors’ type on models’ performances and spatial predictions using 72 plant species belonging to six ecological groups at a regional scale in the area of Geneva (Switzerland). Twelve models were created using various combinations of high-resolution (25 m) explanatory variables including topography, pedology, climate, habitats and remote sensing data. Models integrating a combination of habitats and topopedo-climatic predictors had significantly higher performances, while remote sensing predictors showed low performances. Our results suggest that the number and the level of details of habitat predictors (broad or very precise) do not fundamentally affect prediction maps. However, selecting too few, overly simplified or exceedingly complex habitat predictors tend to lower models’ performances. The use of eight habitat categories complemented with eight topopedo-climatic predictors produced models with the highest performances. Ecological groups of species responded differently to models and while alpine and ruderal species have greater average performances due to a high affinity with topopedo-climatic predictors, wetlands’ species were less performant on average. These results underline the necessity of developing or having access to habitats distribution data especially in a conservation context. Numéro de notice : A2022-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.gecco.2022.e02286 Date de publication en ligne : 13/09/2022 En ligne : https://doi.org/10.1016/j.gecco.2022.e02286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101977
in Global ecology and conservation > vol 39 (November 2022) . - n° e02286[article]A model-based scenario analysis of the impact of forest management and environmental change on the understorey of temperate forests in Europe / Bingbin Wen in Forest ecology and management, vol 522 (October-15 2022)PermalinkEffect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests / M.J. Annala in Forest ecology and management, vol 519 (September-1 2022)PermalinkExperimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three Mediterranean forests of Southern France / Mathieu Santonja in Forests, vol 13 n° 9 (september 2022)PermalinkInfluence of the declaration of protected natural areas on the evolution of forest fires in collective lands in Galicia (Spain) / Gervasio Lopez Rodriguez in Forests, Vol 13 n° 8 (August 2022)PermalinkEmissions of CO2 from downed logs of different species and the surrounding soil in temperate forest / Ewa Błońska in Annals of forest research, Vol 65 n° 2 (July - December 2022)PermalinkCorrection for Cazzolla Gatti et al., The number of tree species on Earth / Roberto Cazzolla Gatti in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 119 n° 13 (2022)PermalinkThe number of tree species on Earth / Roberto Cazzolla Gatti in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 119 n° 6 (2022)PermalinkRelationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types / Gijs Steur in Scientific reports, vol 12 (2022)PermalinkConservation zones increase habitat heterogeneity of certified Mediterranean oak woodlands / Teresa Mexia in Forest ecology and management, vol 504 (January-15 2022)PermalinkEffets des bryophytes sur les microsites de régénération forestière en climat tempéré / Laura Chevaux (2022)Permalink