Annals of GIS / International Association of Chinese Professionals in Geographic Information Science, CPGIS . vol 26 n° 3Paru le : 01/07/2020 |
[n° ou bulletin]
est un bulletin de Annals of GIS / CPGIS International Association of Chinese Professionals in Geographic Information Science (2009 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierIntegration of spatialization and individualization: the future of epidemic modelling for communicable diseases / Meifang Li in Annals of GIS, vol 26 n° 3 (July 2020)
[article]
Titre : Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases Type de document : Article/Communication Auteurs : Meifang Li, Auteur ; Xun Shi, Auteur ; Xia Li, Auteur Année de publication : 2020 Article en page(s) : pp 219 - 226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] épidémie
[Termes IGN] historique des données
[Termes IGN] modèle orienté objet
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] risque sanitaire
[Termes IGN] système d'information géographique
[Termes IGN] transmissibilitéRésumé : (auteur) In the past several decades, epidemic modelling for communicable diseases has experienced transitions from treating the entire study area as a whole to addressing spatial variation within the area, and from targeting the entire population to incorporating characteristics of categorized subpopulations and finally going down to the individual level. These transitions have been first driven by the recognition that generalizations of space and population in conventional epidemic modelling may have hampered the effectiveness of the modelling; they then have been supported by increasingly available data that allow depiction of detailed spatiotemporal characteristics of an epidemic, as well as those characteristics of the environment in both human and natural aspects; and finally they have been facilitated by developments in geographic information science, data science, computer science, and computing technologies. Based on a review of a variety of recently developed communicable disease models, we explicitly put forward the notions of spatialization and individualization in this area, and point out that the integration of the two is the future of communicable disease modelling. We also point out that in this area models based on the object conceptualization are good at modelling spatiotemporal process, whereas models based on the field conceptualization are good at representing spatialized information. We propose a procedural framework of epidemic modelling that implements the integration of individualization and spatialization, integration of object-based process and field-based representation, and integration of modelling that retrospectively traces infection relationships based on historical patient data and modelling that prospectively predicts such relationships of future epidemics. Numéro de notice : A2020-581 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1768438 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/19475683.2020.1768438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95903
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 219 - 226[article]Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
[article]
Titre : Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships Type de document : Article/Communication Auteurs : Chao Song, Auteur ; Xun Shi, Auteur ; Jinfeng Wang, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] données socio-économiques
[Termes IGN] estimation bayesienne
[Termes IGN] géostatistique
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] santé
[Termes IGN] série temporelleRésumé : (auteur) Local regression has an advantage over global regression by allowing coefficients that qualify variables relationships being heterogeneous, where such varying regression relationships are nonstationarity. Spatiotemporally Varying Coefficients (STVC) model is the first Bayesian-based local spatiotemporal regression approach, intending to simultaneously detect spatial and temporal nonstationarity for heterogeneous response-covariate variables relationships, through separately estimating posterior local-scale coefficients over different space areas and time frames. In this paper, we first presented a general Bayesian STVC modelling paradigm as a specification guide to show its commonality in broader geospatial research. Then, we employed it to solve a real-world issue concerning spatiotemporal healthcare-socioeconomic relations, for which we derived data of county-level hospital beds number per capita, as well as data of related socioeconomic factors in northeast China during 2002–2011. Results showed that the STVC model surpassed all the other comparative regressions, in terms of both Bayesian model fitness and predictive ability. Globally, resident savings, financial institutions loans, GDP, and primary industry were identified as key socioeconomic conditions affecting healthcare resources in Northeast China. Temporally, with Time-Coefficients (TC) plots, we found that after 2011, GDP and primary industry would further help improve the overall healthcare level of northeast China. Spatially, with Space-Coefficients (SC) maps, we could directly identify the relative contribution of four socioeconomic covariates’ impacts on healthcare within each administrative county. Bayesian STVC model is an essential development and extension of the local regression family for exploring the spatiotemporal heterogeneous variables relationships, especially under Bayesian statistics, as well as GIScience and spatial statistics. Numéro de notice : A2020-582 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1782469 Date de publication en ligne : 08/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1782469 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95904
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 277 - 291[article]A web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
[article]
Titre : A web-based spatial decision support system for monitoring the risk of water contamination in private wells Type de document : Article/Communication Auteurs : Yu Lan, Auteur ; Wenwu Tang, Auteur ; Samantha Dye, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 293 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] arsenic
[Termes IGN] base de données localisées
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] contamination
[Termes IGN] eau souterraine
[Termes IGN] interpolation spatiale
[Termes IGN] krigeage
[Termes IGN] pollution des eaux
[Termes IGN] prévention des risques
[Termes IGN] puits
[Termes IGN] santé
[Termes IGN] surveillance sanitaire
[Termes IGN] système d'aide à la décision
[Termes IGN] système d'information géographique
[Termes IGN] WebSIGRésumé : (auteur) Long-term exposure to contaminated water can cause health effects, such as cancer. Accurate spatial prediction of inorganic compounds (e.g. arsenic) and pathogens in groundwater is critical for water supply management. Ideally, environmental health agencies would have access to an early warning system to alert well owners of risks of such contamination. The estimation and dissemination of these risks can be facilitated by the combination of Geographic Information Systems and spatial analysis capabilities – i.e., spatial decision support system (SDSS). However, the use of SDSS, especially web-based SDSS, is rare for spatially explicit studies of drinking water quality of private wells. In this study, we introduce the interactive Well Water Risk Estimation(iWWRE), a web-based SDSS to facilitate the monitoring of water contamination in private wells across Gaston County, North Carolina (US). Our system implements geoprocessing web services and generates dynamic spatial analysis results based on a database of private wells. Environmental health scientists using our system can conduct fine-grained spatial interpolation on 1) a particular type of contaminant such as arsenic, 2) on various subsets through a temporal query. Visuals consist of an estimation map, cross validation information, Kriging variance and contour lines that delineate areas with maximum contaminant levels (MCL), as set by the US Environmental Protection Agency (EPA). Our web-based SDSS was developed jointly with environmental health specialists who found it particularly critical for the monitoring of local contamination trends, and a useful tool to reach out to private well users in highly elevated contaminated areas. Numéro de notice : A2020-583 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1798508 Date de publication en ligne : 30/07/2020 En ligne : https://doi.org/10.1080/19475683.2020.1798508 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95905
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 293 - 309[article]