IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 58 n° 10Paru le : 01/10/2020 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Multiview automatic target recognition for infrared imagery using collaborative sparse priors Type de document : Article/Communication Auteurs : Xuelu Li, Auteur ; Vishal Monga, Auteur ; Abhijit Mahalanobis, Auteur Année de publication : 2020 Article en page(s) : pp 6776 - 6790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ajustement de paramètres
[Termes IGN] apprentissage profond
[Termes IGN] détection de cible
[Termes IGN] données clairsemées
[Termes IGN] estimation bayesienne
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à basse résolution
[Termes IGN] image infrarouge
[Termes IGN] reconnaissance automatiqueRésumé : (auteur) The low resolution of infrared (IR) images makes feature extraction for classification of a challenging work. Learning-based methods, therefore, are preferred to be used on such raw imagery. In this article, in order to avoid difficulties in feature extraction, a novel multitask extension of the widely used sparse-representation-classification (SRC) method is proposed in both single and multiview set-ups. That is, the test sample could be a single IR image or images from different views. In both single-view and multiview scenarios, we try to employ collaborative spike and slab priors. This is because the traditional sparsity-inducing measures such as the l0 -row pseudonorm makes it hard to capture the sparse structure of the coefficient matrix when expanded in terms of a training dictionary, and the priors are proved to be able to capture fairly general sparse structures. Furthermore, a joint prior and sparse coefficient estimation method (JPCEM) is proposed for the first time in this article in order to alleviate the need to handpick prior parameters required before classification. Multiple experiments are conducted on a synthetic Comanche Forward Looking IR (FLIR) Automatic Target Recognition (ATR) database collected by Army Research Lab and a challenging mid-wave IR (MWIR) image ATR database made available by the U.S. Army Night Vision and Electronic Sensors Directorate. The final results substantiate the merits of the proposed JPCEM through comparisons with other state-of-the-art methods, including both the ones based on SRC and the ones constructed using deep learning frameworks. Numéro de notice : A2020-584 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973969 Date de publication en ligne : 26/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95908
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6776 - 6790[article]Ground-based remote sensing of forests exploiting GNSS signals / Leila Guerriero in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Ground-based remote sensing of forests exploiting GNSS signals Type de document : Article/Communication Auteurs : Leila Guerriero, Auteur ; Francisco Martin, Auteur ; Antonio Mollfulleda, Auteur Année de publication : 2020 Article en page(s) : pp 6844 - 6860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] atténuation du signal
[Termes IGN] bande L
[Termes IGN] bande P
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Leaf Area Index
[Termes IGN] polarisation
[Termes IGN] Populus (genre)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] signal GNSSRésumé : (auteur) The estimation of aboveground biomass is commonly recognized for global relevance because of the vegetation role in the carbon cycle. Both active and passive microwave sensors can significantly contribute to this goal because of their high sensitivity to water content and high penetration at lower frequencies (L-/P-bands). In particular, Global Navigation Satellite Systems (GNSSs) are recently receiving increasing interest as source of opportunity to be employed as illuminator for L-band remote sensing, since they could provide low-cost sensors for nondestructive forest biomass estimation over large areas. In this article, we suggest a method to extract forest information using the GNSS direct signals collected in clear sky and below the vegetation canopy at both circular polarizations. An experimental campaign, carried out in the framework of an European Space Agency (ESA) project, was conducted over three poplar forests with different biomass to verify the feasibility of this technique. The relationships between the GNSS measurements and the tree parameters were first assessed and then interpreted and supported by statistical analysis and a theoretical model. The signal collected under the canopy is affected by attenuation and depolarization with respect to the one collected in open air, and this article demonstrated that both direct line-of-sight propagation and volume scattering play a role in the signal magnitude and its fluctuation in time. Although the experimental data set is limited in size and environmental conditions, two inversion algorithms were also tested with the encouraging retrieval results. Numéro de notice : A2020-585 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976899 Date de publication en ligne : 23/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95913
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6844 - 6860[article]Application of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Application of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data Type de document : Article/Communication Auteurs : Mahdi Moalla, Auteur ; Hichem Frigui, Auteur ; Andrew Karem, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7022 - 7034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] cible cachée
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données radar
[Termes IGN] image radar moirée
[Termes IGN] mine antipersonnel
[Termes IGN] radar pénétrant GPR
[Termes IGN] réseau neuronal récurrent
[Termes IGN] sous-solRésumé : (auteur) We propose discrimination algorithms for buried threat detection (BTD) that exploit deep convolutional neural networks (CNNs) and recurrent neural networks (RNN) to analyze 2-D GPR B-scans in the down-track (DT) and cross-track (CT) directions as well as 3-D GPR volumes. Instead of imposing a specific model or handcrafted features, as in most existing detectors, we use large real GPR data collections and data-driven approaches that learn: 1) features characterizing buried explosive objects (BEOs) in 2-D B-scans, both in the DT and CT directions; 2) the variation of the CNN features learned in a fixed 2-D view across the third dimension; and 3) features characterizing BEOs in the original 3-D space. The proposed algorithms were trained and evaluated using large experimental GPR data covering a surface area of 120 000 m 2 from 13 different lanes across two U.S. test sites. These data include a diverse set of BEOs consisting of varying shapes, metal content, and underground burial depths. We provide some qualitative analysis of the proposed algorithms by visually comparing their performance and consistency along different dimensions and visualizing typical features learned by some nodes of the network. We also provide quantitative analysis that compares the receiver operating characteristics (ROCs) obtained using the proposed algorithms with those obtained using existing approaches based on CNN as well as traditional learning. Numéro de notice : A2020-586 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2978763 Date de publication en ligne : 25/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2978763 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95914
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7022 - 7034[article]Impact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the bay of Bengal / Raghu Nadimpalli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Impact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the bay of Bengal Type de document : Article/Communication Auteurs : Raghu Nadimpalli, Auteur ; Akhil Srivastava, Auteur ; V. S. Prasad, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6945 - 6957 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bengale, golfe du
[Termes IGN] cyclone
[Termes IGN] image INSAT-VHRR
[Termes IGN] interpolation
[Termes IGN] matrice de covariance
[Termes IGN] modèle de transfert radiatif
[Termes IGN] précipitation
[Termes IGN] prévision météorologique
[Termes IGN] radiance
[Termes IGN] zone intertropicaleRésumé : (auteur) This is the first study concerning the assimilation of the INSAT-3D/3DR radiance in the Hurricane Weather Research and Forecasting (HWRF) model and assesses its credibility to improve track, intensity, and precipitation forecasts of tropical cyclone (TC) Titli that occurred over the Bay of Bengal (BoB), which showed rapid intensification (RI) and weakening through its lifetime. The inbuilt Gridpoint Statistical Interpolation (GSI) method is used with a 3-D variational (3DVAR) configuration. Three sets of numerical experiments such as control (CNTL) (no assimilation), Global Telecommunication System (GTS) (observations from GTS network), and INSAT-3D/3DR (INSAT-3D/3DR sounder radiance data and GTS observations) were carried out with seven different initializations. The radiance analysis reproduced the initial vortex and the prominent synoptic scale features associated with TC Titli. The average root-mean-square errors (RMSE) of the analysis were relatively lower in the INSAT-3D/3DR compared to the CNTL and GTS. The HWRF performance is enhanced for track simulation, with improvements in mean landfall position errors by 40%–70% and 26%–52% for the INSAT-3D/3DR and GTS runs, respectively. The assimilation of radiance data has a positive impact on the simulation of warm core and thermodynamic structures, which has led to a more accurate intensity prediction (by 30–47%) over the CNTL. The assimilation run could realistically simulate the RI and weakening phases of the TC. A cold dry air intrusion is also observed when associated with the weakening. The study highlights the need to incorporate INSAT-3D/3DR radiances for improved TC predictions over the BoB basin. Numéro de notice : A2020-587 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2978211 Date de publication en ligne : 25/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2978211 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95915
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6945 - 6957[article]Combined InSAR and terrestrial structural monitoring of bridges / Sivasakthy Selvakumaran in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Combined InSAR and terrestrial structural monitoring of bridges Type de document : Article/Communication Auteurs : Sivasakthy Selvakumaran, Auteur ; Cristian Rossi, Auteur ; Andrea Marinoni, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7141 - 7153 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coin réflecteur
[Termes IGN] données multisources
[Termes IGN] image radar moirée
[Termes IGN] incertitude des données
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Londres
[Termes IGN] pont
[Termes IGN] surveillance d'ouvrage
[Termes IGN] tachéomètre électroniqueRésumé : (auteur) This article examines advances in interferometric synthetic aperture radar (InSAR) satellite measurement technologies to understand their relevance, utilization, and limitations for bridge monitoring. Waterloo Bridge is presented as a case study to explore how InSAR data sets can be combined with traditional measurement techniques including sensors installed on the bridge and automated total stations. A novel approach to InSAR bridge monitoring was adopted by the installation of physical reflectors at key points of structural interest on the bridge, in order to supplement the bridge’s own reflection characteristics and ensure that the InSAR measurements could be directly compared and combined with in situ measurements. The interpretation and integration of InSAR data sets with civil infrastructure data are more than a trivial task, and a discussion of uncertainty of measurement data is presented. Finally, a strategy for combining and interpreting varied data from multiple sources to provide useful insights into each of these methods is presented, outlining the practical applications of this data analysis to support wider monitoring strategies. Numéro de notice : A2020-588 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2979961 Date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2979961 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95916
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7141 - 7153[article]A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements Type de document : Article/Communication Auteurs : Bikram Koirala, Auteur ; Zohreh Zahiri, Auteur ; Paul Scheunders, Auteur Année de publication : 2020 Article en page(s) : pp 7393 - 7405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] biochimie
[Termes IGN] diagnostic foliaire
[Termes IGN] feuille (végétation)
[Termes IGN] indice de végétation
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régression
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Spectral measurements are commonly applied for the nondestructive estimation of leaf parameters, such as the concentrations of chlorophyll a and b, carotenoid, anthocyanin, brown pigment, leaf water content, and leaf mass per area for the quantification of vegetation physiology. The most popular way to estimate these parameters is by using spectral vegetation indices. The use of biochemical models allows us to use the full wavelength range (400–2500 nm) and to physically interpret the result. However, their performance is usually lower than that of supervised machine learning regression techniques. Machine learning regression techniques, on the other hand, have the disadvantage that the relationship between estimated parameters and the reflectance/transmission spectra is unclear. In this article, a hybrid between a supervised learning method and physical modeling for the estimation of leaf parameters is proposed. In this method, a machine learning regression technique is applied to learn a mapping from the true hyperspectral data set to a data set that follows the PROSPECT model. The PROSPECT model then reveals the actual leaf parameters. Two mapping methods, based on Gaussian processes (GPs) and kernel ridge regression (KRR) are proposed. As an alternative, mapping onto the leaf absorption spectra is proposed as well. The proposed methodology not only estimates the leaf parameters with a lower error but also solves the interpretation problem of the parameters estimated by the advanced machine learning regression techniques. This method is validated on the ANGERS and LOPEX data set. Numéro de notice : A2020-589 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2982263 Date de publication en ligne : 02/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2982263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95919
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7393 - 7405[article]Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction / Wanli Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction Type de document : Article/Communication Auteurs : Wanli Liu, Auteur ; Shuaishuai Sun, Auteur ; Zhixiong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7483 - 7495 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse harmonique
[Termes IGN] angle d'incidence
[Termes IGN] compensation
[Termes IGN] erreur de mesure
[Termes IGN] erreur géométrique
[Termes IGN] erreur instrumentale
[Termes IGN] fonction spline d'interpolation
[Termes IGN] modèle mathématique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) The accuracy of geometric parameters (mainly referred to the incidence angle and measuring distance) in a terrestrial laser scanner (TLS) is not only influenced by the TLS intrinsic systematic instrumental error but also the extrinsic received intensity data. However, the current error compensation methods for geometric parameters mainly focus on the calibration of TLS intrinsic systematic instrumental error and rarely consider the extrinsic intensity data correction. For this reason, this article presents a new method integrating the TLS intrinsic systematic instrumental error calibration and extrinsic intensity data correction to compensate the TLS geometric parameter error. The error compensation procedure is implemented as follows. First, the error compensation mathematical model integrated with TLS intrinsic systematic instrumental error calibration parameters and extrinsic intensity data correction coefficient is established. Second, the hybrid harmonic analysis (HA) and the adaptive wavelet neural network (AWNN) algorithm are proposed to calculate the TLS incidence angle error compensation values. Subsequently, the cubic spline interpolation (CSI) is applied to compute the measuring distance error compensate values. Finally, the TLS (model FARO Focus S150) and the hemispherical angle calibration instrument were used to evaluate the proposed compensation method. The experimental results demonstrate that the geometric parameters are significantly influenced by the intensity data received from TLS, and the proposed method can effectively improve the overall accuracy of the TLS incidence angle and measuring distance. Numéro de notice : A2020-602 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984885 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95957
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7483 - 7495[article]