Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > méthode de Monte-Carlo > méthode de Monte-Carlo par chaînes de Markov
méthode de Monte-Carlo par chaînes de Markov |
Documents disponibles dans cette catégorie (37)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A data-driven framework to manage uncertainty due to limited transferability in urban growth models / Jingyan Yu in Computers, Environment and Urban Systems, vol 98 (December 2022)
[article]
Titre : A data-driven framework to manage uncertainty due to limited transferability in urban growth models Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] étalement urbain
[Termes IGN] Europe (géographie politique)
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle stochastique
[Termes IGN] simulation dynamiqueRésumé : (auteur) The processes of urban growth vary in space and time. There is a lack of model transferability, which means that models estimated for a particular study area and period are not necessarily applicable for other periods and areas. This problem is often addressed through scenario analysis, where scenarios reflect different plausible model realisations based typically on expert consultation. This study proposes a novel framework for data-driven scenario development which, consists of three components - (i) multi-area, multi-period calibration, (ii) growth mode clustering, and (iii) cross-application. The framework finds clusters of parameters, referred to as growth modes: within the clusters, parameters represent similar spatial development trajectories; between the clusters, parameters represent substantially different spatial development trajectories. The framework is tested with a stochastic dynamic urban growth model across European functional urban areas over multiple time periods, estimated using a Bayesian method on an open global urban settlement dataset covering the period 1975–2014.
The results confirm a lack of transferability, with reduced confidence in the model over the validation period, compared to the calibration period. Over the calibration period the probability that parameters estimated specifically for an area outperforms those for other areas is 96%. However, over an independent validation period, this probability drops to 72%. Four growth modes are identified along a gradient from compact to dispersed spatial developments. For most training areas, spatial development in the later period is better characterized by one of the four modes than their own historical parameters. The results provide strong support for using identified parameter clusters as a tool for data-driven and quantitative scenario development, to reflect part of the uncertainty of future spatial development trajectories.Numéro de notice : A2022-799 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101892 Date de publication en ligne : 08/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101966
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101892[article]Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes Type de document : Article/Communication Auteurs : Christian Kruse, Auteur ; Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du recuit simulé
[Termes IGN] chevauchement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage de données
[Termes IGN] Europe centrale
[Termes IGN] guerre
[Termes IGN] image aérienne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus ponctuel marqué
[Termes IGN] processus stochastiqueRésumé : (auteur) Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results. Numéro de notice : A2022-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100017 Date de publication en ligne : 02/06/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101057
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022)[article]Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference Type de document : Article/Communication Auteurs : Xiao Huang, Auteur ; Yang Xu, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1939 - 1961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] disparité
[Termes IGN] distribution spatiale
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] inférence statistique
[Termes IGN] logement
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode robusteRésumé : (auteur) In this study, we aim to reveal hidden patterns and confounders associated with policy implementation and adherence by investigating the home-dwelling stages from a data-driven perspective via Bayesian inference with weakly informative priors and by examining how home-dwelling stages in the USA varied geographically, using fine-grained, spatial-explicit home-dwelling time records from a multi-scale perspective. At the U.S. national level, two changepoints are identified, with the former corresponding to March 22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter corresponding to May 17, 2020. Inspections at U.S. state and county level reveal notable spatial disparity in home-dwelling stage-related variables. A pilot study in the Atlanta Metropolitan area at the Census Tract level reveals that the self-quarantine duration and increase in home-dwelling time are strongly correlated with the median household income, echoing existing efforts that document the economic inequity exposed by the U.S. stay-at-home orders. To our best knowledge, our work marks a pioneering effort to explore multi-scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner. Numéro de notice : A2022-533 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1111/tgis.12918 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1111/tgis.12918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101081
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1939 - 1961[article]Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)
[article]
Titre : Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur ; Christoph Gollob, Auteur ; Ralf Krasnitzer, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Autriche
[Termes IGN] bois sur pied
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] échantillonnage
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle de régression
[Termes IGN] modèle mathématique
[Termes IGN] tempête
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A spatial regression model framework is presented to predict growing stock volume loss due to storm Adrian which caused heavy forest damage in the upper Gail valley in Carinthia, Austria, in October 2018. Model parameters were estimated using growing stock volume measured with a terrestrial laser scanner on 62 sample plots distributed across five sub-regions. Predictor variables were derived from high resolution vegetation height measurements collected during an airborne laser scanning campaign. Non-spatial and spatial candidate models were proposed and assessed based on fit to observed data and out-of-sample prediction. Spatial Gaussian processes associated model intercepts and regression coefficients were used to capture spatial dependence. Results show a spatially-varying coefficient model, which allowed the intercept and regression coefficients to vary spatially, yielded the best fit and prediction. Two approaches were considered for prediction over blowdown areas: 1) an areal approach that viewed each blowdown as a single prediction unit indexed by its centroid; and 2) a block approach where each blowdown was partitioned into smaller prediction units to better align with sample plots’ spatial support. Joint prediction was used to acknowledge spatial dependence among block units. Results demonstrated the block approach is preferable as it mitigated change-of-support issues encountered in the areal approach. Despite the small sample size, predictions for 55% of the total 564 blowdown areas, accounting for 93% of the total loss, had a coefficient of variation less than 25%. Key advantages of the proposed regression framework and chosen Bayesian inferential paradigm, were the ability to quantify uncertainty in spatial covariance parameters, propagate parameter uncertainty through to prediction, and provide statistically valid prediction point and interval estimates for individual blowdowns and collections of blowdowns at the sub-region and region scale via posterior predictive distribution summaries. Numéro de notice : A2021-770 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119714 Date de publication en ligne : 07/10/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119714 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98822
in Forest ecology and management > vol 502 (December-15 2021) . - n° 119714[article]Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation / Jingyan Yu in Computers, Environment and Urban Systems, vol 90 (November 2021)
[article]
Titre : Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 101689 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Corine Land Cover
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] Grande-Bretagne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle dynamiqueRésumé : (auteur) Cellular Automata (CA) models are widely used to study spatial dynamics of urban growth and evolving patterns of land use. One complication across CA approaches is the relatively short period of data available for calibration, providing sparse information on patterns of change and presenting problematic signal-to-noise ratios. To overcome the problem of short-term calibration, this study investigates a novel approach in which the model is calibrated based on the urban morphological patterns that emerge from a simulation starting from urban genesis, i.e., a land cover map completely void of urban land. The application of the model uses the calibrated parameters to simulate urban growth forward in time from a known urban configuration. This approach to calibration is embedded in a new framework for the calibration and validation of a Constrained Cellular Automata (CCA) model of urban growth. The investigated model uses just four parameters to reflect processes of spatial agglomeration and preservation of scarce non-urban land at multiple spatial scales and makes no use of ancillary layers such as zoning, accessibility, and physical suitability. As there are no anchor points that guide urban growth to specific locations, the parameter estimation uses a goodness-of-fit (GOF) measure that compares the built density distribution inspired by the literature on fractal urban form. The model calibration is a novel application of Markov Chain Monte Carlo Approximate Bayesian Computation (MCMC-ABC). This method provides an empirical distribution of parameter values that reflects model uncertainty. The validation uses multiple samples from the estimated parameters to quantify the propagation of model uncertainty to the validation measures. The framework is applied to two UK towns (Oxford and Swindon). The results, including cross-application of parameters, show that the models effectively capture the different urban growth patterns of both towns. For Oxford, the CCA correctly produces the pattern of scattered growth in the periphery, and for Swindon, the pattern of compact, concentric growth. The ability to identify different modes of growth has both a theoretical and practical significance. Existing land use patterns can be an important indicator of future trajectories. Planners can be provided with insight in alternative future trajectories, available decision space, and the cumulative effect of parcel-by-parcel planning decisions. Numéro de notice : A2021-616 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101689 Date de publication en ligne : 12/08/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101689 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98367
in Computers, Environment and Urban Systems > vol 90 (November 2021) . - n° 101689[article]Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine / Tongxi Hu in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)PermalinkA Bayesian displacement field approach to accurate registration of SAR images / Mingtao Ding in Geocarto international, vol 36 n° 9 ([15/05/2021])PermalinkPermalinkQuantification probabiliste des taux de déformation crustale par inversion bayésienne de données GPS / Colin Pagani (2021)PermalinkBayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkPermalinkAsymptotically exact data augmentation : models and Monte Carlo sampling with applications to Bayesian inference / Maxime Vono (2020)PermalinkPermalinkCamera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs / Grégoire Guillet in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)PermalinkSimultaneous characterization of objects temperature and radiative properties through multispectral infrared thermography / Thibaud Toullier (2019)Permalink