Remote sensing . vol 12 n° 18Paru le : 15/09/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUse of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September-2 2020)
[article]
Titre : Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed Type de document : Article/Communication Auteurs : Qinghu Jiang, Auteur ; Yiyun Chen, Auteur ; Jialiang Hu, Auteur ; Feng Liu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] érosion
[Termes IGN] étalonnage de modèle
[Termes IGN] image proche infrarouge
[Termes IGN] image visible
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] sol arable
[Termes IGN] spectroscopie
[Termes IGN] surface cultivée
[Termes IGN] utilisation du solRésumé : (auteur) This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR) spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed. To achieve this goal, we explored the performance and transferability of the developed spectral models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first two types are natural land and the latter two are cultivated land). Subsequently, we developed an improved approach by combining spectral data with related topographic variables (i.e., elevation, watershed location, slope height, and normalized height) to estimate K. The results indicate that the calibrated spectral model using total samples could estimate K factor effectively (R2CV = 0.71, RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples, models performed well in natural land soils (R2P = 0.74, RPDP = 1.93) but failed in cultivated land soils (R2P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability between the natural and cultivated land datasets. The results also indicate that the combination of spectral data with topographic variables could slightly increase the accuracies of K estimation in total and natural land datasets but did not work for cultivated land samples. This study demonstrated that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the predictability and transferability of the calibrated models were land-use type dependent. Our study also revealed that the coupling of spectrum and environmental variable is an effective improvement of K estimation in natural landscape region Numéro de notice : A2020-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183103 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/rs12183103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96052
in Remote sensing > vol 12 n° 18 (September-2 2020) . - 16 p.[article]Background tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September-2 2020)
[article]
Titre : Background tropospheric delay in geosynchronous synthetic aperture radar Type de document : Article/Communication Auteurs : Dexin Li, Auteur ; Xiaoxiang Zhu, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] compensation
[Termes IGN] décorrélation
[Termes IGN] données météorologiques
[Termes IGN] image à haute résolution
[Termes IGN] image radar moirée
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] propagation troposphérique
[Termes IGN] radar bistatique
[Termes IGN] retard troposphérique
[Termes IGN] synchronisationRésumé : (auteur) Spaceborne synthetic aperture radar (SAR) has been treated as a weather independent system for a long time. However, with the development of advanced SAR configurations, e.g., high resolution, bistatic, geosynchronous (GEO), the influence of tropospheric propagation error, which strongly depends on the weather, has begun to receive attention. In this paper, we focus on the effect of deterministic background tropospheric delay (BTD) during the image formation of GEO SAR. First, the decorrelation problems caused by the spatial variation and BTD are presented. Second, by combining with the SAR imaging geometry, the BTD error is decomposed as constant error, spatially variant error, and time variant error, the influences of which are analyzed under different circumstances. Third, an imaging method starting from the meteorological parameters and the GEO SAR systematic parameters is proposed to deal with the decorrelation problems. Finally, simulations with the dot-matrix targets are performed to validate the imaging method. Numéro de notice : A2020-632 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183081 Date de publication en ligne : 20/09/2020 En ligne : https://doi.org/10.3390/rs12183081 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96053
in Remote sensing > vol 12 n° 18 (September-2 2020) . - 21 p.[article]