[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLandslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] carte topographique
[Termes IGN] cartographie des risques
[Termes IGN] catastrophe naturelle
[Termes IGN] Corée du sud
[Termes IGN] effondrement de terrain
[Termes IGN] modèle stochastique
[Termes IGN] réseau bayesien
[Termes IGN] système d'information géographique
[Termes IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 Date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
[article]
Titre : Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México Type de document : Article/Communication Auteurs : Nelly L. Ramirez Serrato, Auteur ; Fabiola D. Yepez-Rincon, Auteur ; Adrian L. Ferrino Fierro, Auteur Année de publication : 2020 Article en page(s) : pp 1706 - 1721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] cartographie des risques
[Termes IGN] chaîne de traitement
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] effondrement de terrain
[Termes IGN] image satellite
[Termes IGN] inventaire
[Termes IGN] Mexique
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] visualisation 3DRésumé : (auteur) By nature, slopes are conformed by forces that are in constant balance. Altering this natural balance causes the sliding of soil towards lower zones. Landslides are a constant danger that compromises the general welfare of society. Landslides mapping is especially important for urban areas or development plans. The innovative aspect of this study is the creation of the Topographic Connection Method (TPCM) to automatically map landslides using two types of landslides 1) falls and 2) flows. TPCM cartography results were compared to a previously proven method (Contour Connection Method), as well as to the manual inventory method. Each method was run four times to locate changes through time by using satellite imagery, digital elevations models and 3D relief visualizations with data covering a period from 2012 to 2017. Results showed both falls and flows with all three methods and demonstrated that TPCM can improve mapping accuracy by up to 14%. Numéro de notice : A2020-659 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581269 Date de publication en ligne : 01/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96132
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1706 - 1721[article]Soil erosion assessment using RUSLE model and its validation by FR probability model / Amiya Gayen in Geocarto international, vol 35 n° 15 ([01/11/2020])
[article]
Titre : Soil erosion assessment using RUSLE model and its validation by FR probability model Type de document : Article/Communication Auteurs : Amiya Gayen, Auteur ; Sunil Saha, Auteur ; Hamid Reza Pourghasemi, Auteur Année de publication : 2020 Article en page(s) : pp 1750 - 1768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de sensibilité
[Termes IGN] cartographie des risques
[Termes IGN] érosion
[Termes IGN] érosion hydrique
[Termes IGN] fréquence
[Termes IGN] Inde
[Termes IGN] modèle RUSLE
[Termes IGN] modèle stochastique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] occupation du sol
[Termes IGN] pente
[Termes IGN] surveillance géologique
[Termes IGN] utilisation du solRésumé : (auteur) The objective of the current study is to estimate the annual average soil loss through RUSLE model and furthermore assess the soil erosion risk and its distribution using frequency ratio (FR) probability algorithm. At first, soil erosion risk zones were identified using FR model by the consideration 14 soil erosion conditioning factors such as land use (LU/LC), slope, slope aspect, normalized difference vegetation index (NDVI), altitude, plan curvature, stream power index, distance from river, road, and lineament, soil types, rainfall erosivity, slope length and lineament density. Secondly, the spatial pattern of annual average soil loss rates was estimated using RUSLE model with consideration of five factors such as, rainfall erosivity (R), cover management (C), slope length (LS), soil erodability (K), and conservation practice factors (P). In order to map soil erosion susceptibility by the FR model, dataset divided randomly into parts 70/30 percent for training and validation purposes, respectively. Based on the FR value, the susceptibility map was reclassified into five different critical erosion probability zones. Among this, the severe and high erosion zones occupy 13.69% and 16.26%, respectively, of the total area, where as low and very low susceptibility zones together constitute 32.98% of the River Basin. The assessed high amount of average annual soil erosion (more than 100 t/ha/year) is occupied 9.55% of the total study area. It is conclude that high soil erosion susceptibility and yearly average soil loss were performed in this study area. Therefore, the produced soil erosion susceptibility maps and annual average soil erosion map can be very useful for primary land use planning and soil erosion hazard mitigation purpose for prioritizing areas. Numéro de notice : A2020-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581272 Date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96134
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1750 - 1768[article]