Transactions in GIS . Vol 24 n° 5Paru le : 01/10/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierCityJSON in QGIS: Development of an open‐source plugin / Stelios Vitalis in Transactions in GIS, Vol 24 n° 5 (October 2020)
[article]
Titre : CityJSON in QGIS: Development of an open‐source plugin Type de document : Article/Communication Auteurs : Stelios Vitalis, Auteur ; Ken Arroyo Ohori, Auteur ; Jantien E. Stoter, Auteur Année de publication : 2020 Article en page(s) : pp 1147-1164 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] CityGML
[Termes IGN] édition en libre accès
[Termes IGN] format JSON
[Termes IGN] implémentation (informatique)
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] module d'extension
[Termes IGN] QGIS
[Termes IGN] visualisation 3DRésumé : (Auteur) When QGIS 3.0 was released in 2018, it added support for 3D visualisation. At the same time, CityJSON has been developing as an easy‐to‐use JavaScript Object Notation (JSON) encoding for 3D city models using the CityGML 2.0 data model. Together, this opened the possibility to support semantic 3D city models in the popular open‐source GIS software for the first time. In order to add support for 3D city models in QGIS, we have developed a plugin that enables CityJSON datasets to be loaded. The plugin parses a CityJSON file and analyses its tree structure to identify all city objects. Then, the geometry and attributes of every city object are transformed into QGIS features and divided into layers according to user preferences. CityJSON parsing was proven to be straightforward and consistent when tested against several open datasets. One of the biggest challenges we faced, though, was mapping CityJSON’s hierarchical data structure to the relational model of QGIS. We undertook this issue by providing various methods on how geometries from the model are loaded as QGIS features. We intend to use the plugin for educational purposes in our university and we believe it can be proven a worthy tool for researchers and practitioners. Numéro de notice : A2020-498 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12657 Date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.1111/tgis.12657 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96198
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1147-1164[article]fusionImage: An R package for pan‐sharpening images in open source software / Fulgencio Cánovas‐García in Transactions in GIS, Vol 24 n° 5 (October 2020)
[article]
Titre : fusionImage: An R package for pan‐sharpening images in open source software Type de document : Article/Communication Auteurs : Fulgencio Cánovas‐García, Auteur ; Paúl Pesántez‐Cobos, Auteur ; Francisco Alonso‐Sarría, Auteur Année de publication : 2020 Article en page(s) : pp 1185-1207 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] analyse en composantes principales
[Termes IGN] filtre passe-haut
[Termes IGN] logiciel libre
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] R (langage)Résumé : (Auteur) The objective of this article is to evaluate the performance of three pan‐sharpening algorithms (high‐pass filter, principal component analysis and Gram–Schmidt) to increase the spatial resolution of five types of multispectral images and to evaluate the results in terms of color, coherence and spatial sharpness, both qualitatively and quantitatively. A secondary objective is to present an implementation of the aforementioned pan‐sharpening techniques within the open source software R. From a qualitative point of view, pan‐sharpening of images with a high spatial resolution ratio give better results than those whose spatial resolution ratio is 2. According to the quantitative evaluation, there is no pan‐sharpening methodology that obtains optimal results simultaneously for all types of images used. The results of the spectral and spatial ERGAS index vary for four out of the five types of images analyzed. The results show that none of the methods implemented in this work can be considered a priori better than the others. At the same time, this work indicates the importance of both qualitative and quantitative assessment. Numéro de notice : A2020-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12676 Date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1111/tgis.12676 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96206
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1185-1207[article]Machine‐learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians / Achituv Cohen in Transactions in GIS, Vol 24 n° 5 (October 2020)
[article]
Titre : Machine‐learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians Type de document : Article/Communication Auteurs : Achituv Cohen, Auteur ; Sagi Dalyot, Auteur Année de publication : 2020 Article en page(s) : pp 1264-1279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion des itinéraires
[Termes IGN] handicap
[Termes IGN] itinéraire piétionnier
[Termes IGN] modèle de simulation
[Termes IGN] navigation pédestre
[Termes IGN] OpenStreetMap
[Termes IGN] personne non-voyante
[Termes IGN] point d'intérêt
[Termes IGN] trafic routierRésumé : (Auteur) Navigation and orientation while walking in urban spaces pose serious challenges for blind pedestrians, sometimes even on a daily basis. Research shows the practicability of computerized weighted network route planning algorithms based on OpenStreetMap mapping data for calculating customized routes for blind pedestrians. While data about pedestrians and vehicle traffic flow at different times throughout the day influence the route choices of blind pedestrians, such data do not exist in OpenStreetMap. Quantifying the correlation between spatial structure and traffic flow could be used to fill this gap. As such, we investigated machine‐learning methods to develop a computerized model for predicting pedestrian traffic flow levels, with the objective of enriching the OpenStreetMap database. This article presents prediction results by implementing six machine‐learning algorithms based on parameters relating to the geometrical and topological configuration of streets in OpenStreetMap, as well as points‐of‐interest such as public transportation and shops. The Random Forest algorithm produced the best results, whereby 95% of the testing data were successfully predicted. These results indicate that machine‐learning algorithms can accurately generate necessary temporal data, which when combined with the available crowdsourced open mapping data could augment the reliability of route planning algorithms for blind pedestrians. Numéro de notice : A2020-700 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12674 Date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1111/tgis.12674 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96210
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1264-1279[article]OpenStreetMap quality assessment using unsupervised machine learning methods / Kent T. Jacobs in Transactions in GIS, Vol 24 n° 5 (October 2020)
[article]
Titre : OpenStreetMap quality assessment using unsupervised machine learning methods Type de document : Article/Communication Auteurs : Kent T. Jacobs, Auteur ; Scott W. Mitchell, Auteur Année de publication : 2020 Article en page(s) : pp 1280-1298 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] approche participative
[Termes IGN] Canada
[Termes IGN] données localisées des bénévoles
[Termes IGN] estimation de précision
[Termes IGN] fiabilité des données
[Termes IGN] OpenStreetMap
[Termes IGN] Ottawa
[Termes IGN] qualité des donnéesRésumé : (Auteur) The reliability and quality of volunteered geographic information (VGI) continue to be pressing concerns. Many VGI projects lack standard geospatial data quality assurance procedures, and the reliability of contributors remains in question. Traditional approaches rely on comparing VGI to an “authoritative” or “gold standard” dataset to assess quality. This study investigates VGI quality by analysing the OpenStreetMap (OSM) database in Ottawa‐Gatineau, focusing on historical map features and contributor data to gain an understanding of how users are contributing to the database, and their ability to do so accurately. Unsupervised machine learning analyses expose a cluster of experienced contributors classified as “OSM validators/experts”, which are then further used to attribute data quality. They are identified through a combination of strong contribution loadings associated with the use and experience of advanced OSM editors, and weaker loadings associated with feature creation and frequency of contributions leading to further correction. Limitations are discussed with implications for future work. Numéro de notice : A2020-701 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12680 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1111/tgis.12680 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96224
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1280-1298[article]A graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
[article]
Titre : A graph convolutional network model for evaluating potential congestion spots based on local urban built environments Type de document : Article/Communication Auteurs : Kun Qin, Auteur ; Yuanquan Xu, Auteur ; Chaogui Kang, Auteur ; Mei-Po Kwan, Auteur Année de publication : 2020 Article en page(s) : pp 1382-1401 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] données GPS
[Termes IGN] graphe
[Termes IGN] image Streetview
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] taxi
[Termes IGN] trafic routier
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaine denseRésumé : (Auteur) Automatically identifying potential congestion spots in cities has significant practical implications for efficient urban development and management. It requires the ability to examine the relationships between urban built environment features and traffic congestion situations. This article presents a novel and effective approach for achieving the task based on a machine‐learning technique and publicly available street‐view imagery and point‐of‐interest (POI) data. The proposed multiple‐graph‐based convolutional network architecture can: (a) extract essential urban built environment features from street‐view imagery and neighboring POIs; (b) model the spatial dependencies between traffic congestion on road networks via graph convolution; and (c) evaluate the risk level of road intersections to emerging congestion situations based on local built environment features. We apply the model to Wuhan in China, and predict the potential congestion spots across the city. The results confirm that the model prediction is highly consistent (about 85.5%) when compared to the ground‐truth data based on traffic indices derived from a big taxi GPS trajectory dataset. This research enhances the understanding of traffic congestion situations under various geographic, societal, and economic contexts based on easily accessible road, street‐view, and POI datasets at large spatiotemporal scales. Numéro de notice : A2020-702 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12641 Date de publication en ligne : 04/06/2020 En ligne : https://doi.org/10.1111/tgis.12641 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96225
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1382-1401[article]