IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 58 n° 11Paru le : 01/11/2020 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRiver ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : River ice segmentation with deep learning Type de document : Article/Communication Auteurs : Abhineet Singh, Auteur ; Hayden Kalke, Auteur ; Mark Loewen, Auteur Année de publication : 2020 Article en page(s) : pp 7570 - 7579 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] Canada
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] glace
[Termes IGN] image captée par drone
[Termes IGN] rivière
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) This article deals with the problem of computing surface concentrations for two types of river ice from digital images acquired during freeze-up. It presents the results of attempting to solve this problem using several state-of-the-art semantic segmentation methods based on deep convolutional neural networks (CNNs). This task presents two main challenges—very limited availability of labeled training data and presence of noisy labels due to the great difficulty of visually distinguishing between the two types of ice, even for human experts. The results are used to analyze the extent to which some of the best deep learning methods currently in existence can handle these challenges. The code and data used in the experiments are made publicly available to facilitate further work in this domain. Numéro de notice : A2020-674 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2981082 Date de publication en ligne : 13/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2981082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96165
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7570 - 7579[article]Geostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Geostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier Type de document : Article/Communication Auteurs : Simone Baffelli, Auteur ; Othmar Frey, Auteur ; Irena Hajnsek, Auteur Année de publication : 2020 Article en page(s) : pp 7533 - 7556 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Alpes
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bande Ku
[Termes IGN] covariance
[Termes IGN] erreur de phase
[Termes IGN] géostatistique
[Termes IGN] glacier
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] série temporelle
[Termes IGN] vapeur d'eau
[Termes IGN] variogrammeRésumé : (auteur) Terrestrial radar interferometry (TRI) can measure displacements at high temporal resolution, potentially with high accuracy. An application of this method is the observation of the surface flow velocity of steep, fast-flowing aglaciers. For these observations, the main factor limiting the accuracy of TRI observations is the spatial and temporal variabilities in the distribution of atmospheric water vapor content, causing a phase delay [atmospheric phase screen (APS)] whose magnitude is similar to the displacement phase. This contribution presents a geostatistical analysis of the spatial and temporal behaviors of the APS in Ku-Band TRI. The analysis is based on the assumption of a separable spatiotemporal covariance structure, which is tested empirically using variogram analysis. From this analysis, spatial and temporal APS statistics are estimated and used in a two-step procedure combining regression-Kriging with generalized least squares (GLS) inversion to estimate a velocity time-series. The performance of this method is evaluated by cross-validation using phase observations on stable scatterers. This analysis shows a considerable reduction in residual phase variance compared with the standard approach of combining the linear models of APS stratification and interferogram stacking. Numéro de notice : A2020-675 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976656 Date de publication en ligne : 13/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96166
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7533 - 7556[article]Bayesian transfer learning for object detection in optical remote sensing images / Changsheng Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Bayesian transfer learning for object detection in optical remote sensing images Type de document : Article/Communication Auteurs : Changsheng Zhou, Auteur ; Jiangshe Zhang, Auteur ; Junmin Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7705 - 7719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] détection d'objet
[Termes IGN] distribution de Fisher
[Termes IGN] jeu de données localisées
[Termes IGN] théorème de BayesRésumé : (auteur) In the literature of object detection in optical remote sensing images, a popular pipeline is first modifying an off-the-shelf deep neural network, then initializing the modified network by pretrained weights on a source data set, and finally fine-tuning the network on a target data set. The procedure works well in practice but might not make full use of underlying knowledge implied by pretrained weights. In this article, we propose a novel method, referred to as Fisher regularization, for efficient knowledge transferring. Based on Bayes’ theorem, the method stores underlying knowledge into a Fisher information matrix and fine-tunes parameters based on the knowledge. The proposed method would not introduce extra parameters and is less sensitive to hyperparameters than classical weight decay. Experiments on NWPUVHR-10 and DOTA data sets show that the proposed method is effective and works well with different object detectors. Numéro de notice : A2020-679 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2983201 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2983201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96182
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7705 - 7719[article]Fusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Fusion of sparse model based on randomly erased image for SAR occluded target recognition Type de document : Article/Communication Auteurs : Zhiqiang He, Auteur ; Huaitie Xiao, Auteur ; Chao Gao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7829 - 7844 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] cible cachée
[Termes IGN] détection de cible
[Termes IGN] détection de partie cachée
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (auteur) The recognition of partially occluded targets is a difficult problem in the field of synthetic aperture radar (SAR) target recognition. To eliminate the effect of occlusion, the intuitive idea is to determine the exact location and the size of the occluded area. However, this is very difficult, even impossible in practice. In order to avoid this difficulty and to improve the recognition performance for the partially occluded target, a fusion strategy of the sparse representation (SR) model based on randomly erased images is proposed to recognize the partially occluded target. The proposed method randomly erases some areas many times in both the test samples and the training samples. The erased training samples in each erasure are used to sparsely represent the corresponding erased test sample. Finally, all the SR results are fused to recognize the test sample. The proposed method utilizes random erasure to eliminate the possible occluded region. In addition, this method uses the fusion strategy to overcome under-erasing of the occluded region and erroneous erasure of the unoccluded region. The key parameter of the proposed method is the erasure ratio only. Although the erasure is random, the recognition performance of the method is relatively stable. Therefore, the method can eliminate the influence of occlusion without determining the details of occlusion. The experimental results show that the proposed method is significantly better than the state-of-the-art methods in the case of occlusion. Additionally, the recognition performance of the proposed method is similar to some comparison methods in the case of no occlusion. Numéro de notice : A2020-680 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984577 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984577 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96204
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7829 - 7844[article]Indoor point cloud segmentation using iterative Gaussian mapping and improved model fitting / Bufan Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Indoor point cloud segmentation using iterative Gaussian mapping and improved model fitting Type de document : Article/Communication Auteurs : Bufan Zhao, Auteur ; Xianghong Hua, Auteur ; Kegen Yu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7890 - 7907 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données lidar
[Termes IGN] itération
[Termes IGN] modélisation 3D
[Termes IGN] processus gaussien
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] regroupement de points
[Termes IGN] scène intérieure
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Indoor scene segmentation based on 3-D laser point cloud is important for rebuilding and classification, especially for permanent building structure. However, the existing segmentation methods mainly focus on the large-scale planar structures but ignore the other sharp structures and details, which would cause accuracy degradation in scene reconstruction. To handle this issue, an iterative Gaussian mapping-based segmentation strategy has been proposed in this article, which goes from rough segmentation to refined one iteratively to decompose the indoor scene into detectable point cloud clusters layer by layer. An improved model fitting algorithm based on the maximum likelihood estimation sampling consensus (MLESAC) algorithm is proposed for refined segmentation, which is called the Prior-MLESAC algorithm, to deal with the extraction of both vertical and nonvertical planar and cylindrical structures. The experimental results demonstrate that planar and cylindrical structures are segmented more completely by the proposed strategy, and more details of the indoor structure are restored than other existing methods. Numéro de notice : A2020-681 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984943 Date de publication en ligne : 16/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984943 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96205
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7890 - 7907[article]A fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : A fractal projection and Markovian segmentation-based approach for multimodal change detection Type de document : Article/Communication Auteurs : Max Mignotte, Auteur Année de publication : 2020 Article en page(s) : pp 8046 - 8058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification non dirigée
[Termes IGN] décomposition d'image
[Termes IGN] détection de changement
[Termes IGN] estimation bayesienne
[Termes IGN] géométrie fractale
[Termes IGN] image satellite
[Termes IGN] projection
[Termes IGN] segmentation d'imageRésumé : (auteur) Change detection in heterogeneous bitemporal satellite images has become an emerging, important, and challenging research topic in remote sensing for rapid damage assessment. In this article, we explore a new parametric mapping strategy based on a modified geometric fractal decomposition and a contractive mapping approach allowing us to project the before image on any after imaging modality type. This projection exploits the fact that any satellite image data can be approximatively encoded in terms of spatial self-similarities at different scales and this property remains quite invariant to a given imaging modality type. Once the projection is performed and that a pixelwise difference map between the two images (presented in the same imaging modality) is then binarized in the unsupervised Bayesian framework. At this stage, we will test several parameter estimation procedures combined with several segmentation strategies based on different Bayesian cost functions. The experiments for change detection, with real images showing different multimodalities and changed events, indicate that this new fractal-based projection method, which is entirely based on a series of structural and spatial information, is an interesting alternative to classical regression-based projection methods (based only on luminance transformation). Besides, the experiments also show that the difference map, resulting in this novel projection strategy, is also particularly amenable for an unsupervised Markovian binarization approach. Numéro de notice : A2020-682 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2986239 Date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2986239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96207
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8046 - 8058[article]High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Ruyi Feng, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8077 - 8092 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] jeu de données
[Termes IGN] segmentation sémantique
[Termes IGN] test statistiqueRésumé : (auteur) High-resolution remote sensing (HRRS) image scene classification has attracted an enormous amount of attention due to its wide application in a range of tasks. Due to the rapid development of deep learning (DL), models based on convolutional neural network (CNN) have made competitive achievements on HRRS image scene classification because of the excellent representation capacity of DL. The scene labels of HRRS images extremely depend on the combination of global information and information from key regions or locations. However, most existing models based on CNN tend only to represent the global features of images or overstate local information capturing from key regions or locations, which may confuse different categories. To address this issue, a key region or location capturing method called key filter bank (KFB) is proposed in this article, and KFB can retain global information at the same time. This method can combine with different CNN models to improve the performance of HRRS imagery scene classification. Moreover, for the convenience of practical tasks, an end-to-end model called KFBNet where KFB combined with DenseNet-121 is proposed to compare the performance with existing models. This model is evaluated on public benchmark data sets, and the proposed model makes better performance on benchmarks than the state-of-the-art methods. Numéro de notice : A2020-683 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987060 Date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987060 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96208
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8077 - 8092[article]Bayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Bayesian-deep-learning estimation of earthquake location from single-station observations Type de document : Article/Communication Auteurs : S. Mostafa Mousavi, Auteur ; Gregory C. Beroza, Auteur Année de publication : 2020 Article en page(s) : pp 8211 - 8224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] apprentissage profond
[Termes IGN] classification bayesienne
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du signal
[Termes IGN] épicentre
[Termes IGN] estimation bayesienne
[Termes IGN] onde sismique
[Termes IGN] régression
[Termes IGN] séisme
[Termes IGN] station d'observation
[Termes IGN] surveillance géologique
[Termes IGN] temps de propagationRésumé : (auteur) We present a deep-learning method for a single-station earthquake location, which we approach as a regression problem using two separate Bayesian neural networks. We use a multitask temporal convolutional neural network to learn epicentral distance and P travel time from 1-min seismograms. The network estimates epicentral distance and P travel time with mean errors of 0.23 km and 0.03 s and standard deviations of 5.42 km and 0.66 s, respectively, along with their epistemic and aleatory uncertainties. We design a separate multi-input network using standard convolutional layers to estimate the back-azimuth angle and its epistemic uncertainty. This network estimates the direction from which seismic waves arrive at the station with a mean error of 1°. Using this information, we estimate the epicenter, origin time, and depth along with their confidence intervals. We use a global data set of earthquake signals recorded within 1° (~112 km) from the event to build the model and demonstrate its performance. Our model can predict epicenter, origin time, and depth with mean errors of 7.3 km, 0.4 s, and 6.7 km, respectively, at different locations around the world. Our approach can be used for fast earthquake source characterization with a limited number of observations and also for estimating the location of earthquakes that are sparsely recorded—either because they are small or because stations are widely separated. Numéro de notice : A2020-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988770 Date de publication en ligne : 06/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988770 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96209
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8211 - 8224[article]