ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 170Paru le : 01/12/2020 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020121 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierParsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss Type de document : Article/Communication Auteurs : Xianwei Zheng, Auteur ; Linxi Huan, Auteur ; Gui-Song Xia, Auteur ; Jianya Gong, Auteur Année de publication : 2020 Article en page(s) : pp 15-28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification basée sur les régions
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] image à très haute résolution
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Parsing very high resolution (VHR) urban scene images into regions with semantic meaning, e.g. buildings and cars, is a fundamental task in urban scene understanding. However, due to the huge quantity of details contained in an image and the large variations of objects in scale and appearance, the existing semantic segmentation methods often break one object into pieces, or confuse adjacent objects and thus fail to depict these objects consistently. To address these issues uniformly, we propose a standalone end-to-end edge-aware neural network (EaNet) for urban scene semantic segmentation. For semantic consistency preservation inside objects, the EaNet model incorporates a large kernel pyramid pooling (LKPP) module to capture rich multi-scale context with strong continuous feature relations. To effectively separate confusing objects with sharp contours, a Dice-based edge-aware loss function (EA loss) is devised to guide the EaNet to refine both the pixel- and image-level edge information directly from semantic segmentation prediction. In the proposed EaNet model, the LKPP and the EA loss couple to enable comprehensive feature learning across an entire semantic object. Extensive experiments on three challenging datasets demonstrate that our method can be readily generalized to multi-scale ground/aerial urban scene images, achieving 81.7% in mIoU on Cityscapes Test set and 90.8% in the mean F1-score on the ISPRS Vaihingen 2D Test set. Code is available at: https://github.com/geovsion/EaNet. Numéro de notice : A2020-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.019 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96228
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 15-28[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data Type de document : Article/Communication Auteurs : Christian Geiss, Auteur ; Henrik Schrade, Auteur ; Patrick Aravena Pelizari, Auteur ; Hannes Taubenböck, Auteur Année de publication : 2020 Article en page(s) : pp 57-71 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hauteur du bâti
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image TanDEM-X
[Termes IGN] modèle de régression
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processus gaussien
[Termes IGN] zone urbaine denseRésumé : (Auteur) In this paper, we establish a workflow for estimation of built-up density and height based on multispectral Sentinel-2 data. To do so, we render the estimation of built-up density and height as a supervised learning problem. Given the rational level of measurement of those two target variables, the regression estimation problem is regarded as finding the mapping between an incoming vector, i.e., ubiquitously available features computed from Sentinel-2 data, and an observable output (i.e., training set), which is derived over spatially limited areas in an automated manner. As such, training sets are automatically generated from a joint exploitation of TanDEM-X mission elevation data and Sentinel-2 imagery, and, as an alternative, from cadastral sources. The training sets are used to regress the target variables for spatial processing units which correspond to urban neighborhood scales. From a methodological point of view, we introduce a novel ensemble regression approach, i.e., multistrategy ensemble regression (MSER), based on advanced machine learning-based regression algorithms including Random Forest Regression, Support Vector Regression, Gaussian Process Regression, and Neural Network Regression. To establish a robust ensemble, those algorithms are learned with a modified version of the AdaBoost.RT algorithm. However, to reliably ensure diversity between single boosted regressors, we include a random feature subspace method in the procedure. In contrast to existing approaches, we selectively prune non-favorable regressors trained during the boosting procedure and calculate the final prediction by a weighted mean function on the residual models to ensure enhanced accuracy properties of predictions. Finally, outputs are concatenated into a single prediction with a decision fusion strategy. Experimental results are obtained from four test areas which cover the settlement areas of the four largest German cites, i.e., Berlin, Hamburg, Munich, and Cologne. The results unambiguously underline the beneficial properties of the MSER approach, since all best predictions were obtained with a boosted regressor in conjunction with a decision fusion strategy in a comparative setup. The mean absolute errors of corresponding models vary between 3 and 16% and 1–5.4 m with respect to built-up density and height, respectively, depending on the validation strategy, size of the spatial processing units, and test area. Also in a domain adaptation setup (i.e., when learning a model over a source domain and applying it over a geographically different target domain) numerous predictions show comparable accuracy levels as predictions obtained within a source domain. This further underlines the viability to transfer a model and, thus, enable a substitution of the training data in the target domains. Numéro de notice : A2020-704 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.004 Date de publication en ligne : 22/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96231
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 57-71[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection Type de document : Article/Communication Auteurs : Chandi Witharana, Auteur ; Md Abul Ehsan Bhuiyan, Auteur ; Anna K. Liljedahl, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 174-191 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] apprentissage profond
[Termes IGN] Arctique
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] fusion d'images
[Termes IGN] glace
[Termes IGN] image à haute résolution
[Termes IGN] pergélisol
[Termes IGN] texture d'imageRésumé : (Auteur) The utility of sheer volumes of very high spatial resolution (VHSR) commercial imagery in mapping the Arctic region is new and actively evolving. Commercial satellite sensors typically record image data in low-resolution multispectral (MS) and high-resolution panchromatic (PAN) mode. Spatial resolution is needed to accurately describe feature shapes and textural patterns, such as ice-wedge polygons (IWPs) that are rapidly transforming surface features due to degrading permafrost, while spectral resolution allows capturing of land-use and land-cover types. Data fusion, the process of combining PAN and MS images with complementary characteristics often serves as an integral component of remote sensing mapping workflows. The fusion process generates spectral and spatial artifacts that may affect the classification accuracies of subsequent automated image analysis algorithms, such as deep learning (DL) convolutional neural nets (CNN). We employed a detailed multidimensional assessment to understand the performances of an array of eight application-oriented data fusion algorithms when applied to VHSR image scenes for DLCNN-based mapping of ice-wedge polygons. Our findings revealed the scene dependency of data fusion algorithms and emphasized the need for careful selection of the proper algorithm. Results suggested that the fusion algorithms that preserve spatial character of original PAN imagery favor the DLCNN model performances. The choice of fusion approach needs to be considered of equal importance to the required training dataset for successful applications using DLCNN on VHRS imagery in order to enable an accurate mapping effort of permafrost thaw across the Arctic region. Numéro de notice : A2020-705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.010 Date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96232
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 174-191[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] arbre (flore)
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espèce végétale
[Termes IGN] Forêt-Noire, massif de la
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 Date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible