Paru le : 01/12/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSemantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
[article]
Titre : Semantic trajectory segmentation based on change-point detection and ontology Type de document : Article/Communication Auteurs : Yuan Gao, Auteur ; Longfei Huang, Auteur ; Jun Feng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2361 - 2394 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] détection de changement
[Termes IGN] enrichissement sémantique
[Termes IGN] modèle dynamique
[Termes IGN] objet mobile
[Termes IGN] ontologie
[Termes IGN] point d'intérêt
[Termes IGN] segmentation sémantique
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) Trajectory segmentation is a fundamental issue in GPS trajectory analytics. The task of dividing a raw trajectory into reasonable sub-trajectories and annotating them based on moving subject’s intentions and application domains remains a challenge. This is due to the highly dynamic nature of individuals’ patterns of movement and the complex relationships between such patterns and surrounding points of interest. In this paper, we present a framework called SEMANTIC-SEG for automatic semantic segmentation of trajectories from GPS readings. For the decomposition component of SEMANTIC-SEG, a moving pattern change detection (MPCD) algorithm is proposed to divide the raw trajectory into segments that are homogeneous in their movement conditions. A generic ontology and a spatiotemporal probability model for segmentation are then introduced to implement a bottom-up ontology-based reasoning for semantic enrichment. The experimental results on three real-world datasets show that MPCD can more effectively identify the semantically significant change-points in a pattern of movement than four existing baseline methods. Moreover, experiments are conducted to demonstrate how the proposed SEMANTIC-SEG framework can be applied. Numéro de notice : A2020-689 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1798966 Date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1798966 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96226
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2361 - 2394[article]Group diagrams for representing trajectories / Maike Buchin in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
[article]
Titre : Group diagrams for representing trajectories Type de document : Article/Communication Auteurs : Maike Buchin, Auteur ; Bernhard Kilgus, Auteur ; Andrea Kölzsch, Auteur Année de publication : 2020 Article en page(s) : pp 2401 - 2433 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] approximation
[Termes IGN] base de données d'objets mobiles
[Termes IGN] diagramme
[Termes IGN] distance de Fréchet
[Termes IGN] données GPS
[Termes IGN] géomètrie algorithmique
[Termes IGN] itinéraire
[Termes IGN] migration animale
[Termes IGN] objet mobileRésumé : (auteur) Given the trajectories of one or several moving groups, we propose a new framework, the group diagram (GD) for representing these. Specifically, we seek a minimal GD as a concise representation of the groups maintaining the spatio-temporal structure of the groups’ movement. A GD is specified by three input values, namely a distance threshold, a similarity measure and a minimality criterion. For several variants of the GD, we give a comprehensive analysis of their computational complexity and present efficient approximation algorithms for their computation. Furthermore, we experimentally evaluate our algorithms on GPS data of migrating geese. Applying the proposed methods on these data sets reveals how the GD concisely represents the movement of the groups. This representation can be used for further analysis and for the formulation of new hypotheses for further ecological research, such as differences in movement patterns of groups on different surfaces or the shift of migration routes over several years. We use different similarity measures to summarize the migration routes of (i) a goose family for one migration period and to summarize (ii) the migration routes of one individual for several migration periods or (iii) the migration routes of several independent individuals for one migration period. Numéro de notice : A2020-690 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684498 Date de publication en ligne : 25/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684498 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96227
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2401 - 2433[article]Empirical assessment of road network resilience in natural hazards using crowdsourced traffic data / Yi Qiang in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
[article]
Titre : Empirical assessment of road network resilience in natural hazards using crowdsourced traffic data Type de document : Article/Communication Auteurs : Yi Qiang, Auteur ; Jinwen Xu, Auteur Année de publication : 2020 Article en page(s) : pp 2434 - 2450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] données localisées des bénévoles
[Termes IGN] étude empirique
[Termes IGN] Google Maps
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] participation du public
[Termes IGN] réseau routier
[Termes IGN] résilience écologique
[Termes IGN] risque naturel
[Termes IGN] trafic routierRésumé : (auteur) Climate change and natural hazards pose great threats to road transport systems which are ‘lifelines’ of human society. However, there is generally a lack of empirical data and approaches for assessing resilience of road networks in real hazard events. This study introduces an empirical approach to evaluate road network resilience using crowdsourced traffic data in Google Maps. Based on the conceptualization of resilience and the Hansen accessibility index, resilience of road network is measured from accumulated accessibility reduction over time during a hazard. The utility of this approach is demonstrated in a case study of the Cleveland metropolitan area (Ohio) in Winter Storm Harper. The results reveal strong spatial variations of the disturbance and recovery rate of road network performance during the hazard. The major findings of the case study are: (1) longer distance travels have higher increasing ratios of travel time during the hazard; (2) communities with low accessibility at the normal condition have lower road network resilience; (3) spatial clusters of low resilience are identified, including communities with low socio-economic capacities. The introduced approach provides ground-truth validation for existing quantitative models and supports disaster management and transportation planning to reduce hazard impacts on road network. Numéro de notice : A2020-691 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1694681 Date de publication en ligne : 25/11/2020 En ligne : https://doi.org/10.1080/13658816.2019.1694681 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96229
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2434 - 2450[article]Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace urbain
[Termes IGN] flux de données
[Termes IGN] géobalise
[Termes IGN] géolocalisation
[Termes IGN] hétérogénéité
[Termes IGN] Londres
[Termes IGN] migration humaine
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] population urbaine
[Termes IGN] Tokyo (Japon)
[Termes IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 Date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]