ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 171Paru le : 01/01/2021 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021011 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021013 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2021012 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] corrélation croisée normalisée
[Termes IGN] couple stéréoscopique
[Termes IGN] détection automatique
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation d'image
[Termes IGN] SIFT (algorithme)
[Termes IGN] signalisation routière
[Termes IGN] SURF (algorithme)
[Termes IGN] Téhéran
[Termes IGN] transformation de Hough
[Termes IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 Date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tempérée
[Termes IGN] houppier
[Termes IGN] image Aqua-MODIS
[Termes IGN] image captée par drone
[Termes IGN] image PlanetScope
[Termes IGN] image Terra-MODIS
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 Date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis Type de document : Article/Communication Auteurs : Max Mehltretter, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation épipolaire dense
[Termes IGN] couple stéréoscopique
[Termes IGN] courbe épipolaire
[Termes IGN] disparité
[Termes IGN] effet de profondeur cinétique
[Termes IGN] image RVB
[Termes IGN] modèle d'incertitude
[Termes IGN] modèle stochastique
[Termes IGN] voxelRésumé : (auteur) Motivated by the need to identify erroneous disparity estimates, various methods for the estimation of aleatoric uncertainty in the context of dense stereo matching have been presented in recent years. Especially, the introduction of deep learning based methods and the accompanying significant improvement in accuracy have greatly increased the popularity of this field. Despite this remarkable development, most of these methods rely on features learned from disparity maps only, neglecting the corresponding 3-dimensional cost volumes. However, conventional hand-crafted methods have already demonstrated that the additional information contained in such cost volumes are beneficial for the task of uncertainty estimation. In this paper, we combine the advantages of deep learning and cost volume based features and present a new Convolutional Neural Network (CNN) architecture to directly learn features for the task of aleatoric uncertainty estimation from volumetric 3D data. Furthermore, we discuss and apply three different uncertainty models to train our CNN without the need to provide ground truth for uncertainty. In an extensive evaluation on three datasets using three common dense stereo matching methods, we investigate the effects of these uncertainty models and demonstrate the generality and state-of-the-art accuracy of the proposed method. Numéro de notice : A2021-012 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.003 Date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96415
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 63 - 75[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 / Yousra Hamrouni in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 Type de document : Article/Communication Auteurs : Yousra Hamrouni, Auteur ; Eric Paillassa, Auteur ; Véronique Chéret, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 76 - 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] base de données forestières
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert forestier
[Termes IGN] échantillonnage
[Termes IGN] France (administrative)
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] Populus (genre)
[Termes IGN] série temporelleRésumé : (auteur) Reliable estimates of poplar plantations area are not available at the French national scale due to the unsuitability and low update rate of existing forest databases for this short-rotation species. While supervised classification methods have been shown to be highly accurate in mapping forest cover from remotely sensed images, their performance depends to a great extent on the labelled samples used to build the models. In addition to their high acquisition cost, such samples are often scarce and not fully representative of the variability in class distributions. Consequently, when classification models are applied to large areas with high intra-class variance, they generally yield poor accuracies because of data shift issues. In this paper, we propose the use of active learning to efficiently adapt a classifier trained on a source image to spatially distinct target images with minimal labelling effort and without sacrificing the classification performance. The adaptation consists in actively adding to the initial local model new relevant training samples from other areas in a cascade that iteratively improves the generalisation capabilities of the classifier leading to a global model tailored to these different areas. This active selection relies on uncertainty sampling to directly focus on the most informative pixels for which the algorithm is the least certain of their class labels. Experiments conducted on Sentinel-2 time series revealed their high capacity to identify poplar plantations at a local scale with an average F-score ranging from 89.5% to 99.3%. For large area adaptation, the results showed that when the same number of training samples was used, active learning outperformed random sampling by up to 5% of the overall accuracy and up to 12% of the class F-score. Additionally, and depending on the class considered, the random sampling model required up to 50% more samples to achieve the same performance of an active learning-based model. Moreover, the results demonstrate the suitability of the derived global model to accurately map poplar plantations among other tree species with overall accuracy values up to 14% higher than those obtained with local models. The proposed approach paves the way for a national scale mapping in an operational context. Numéro de notice : A2021-013 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.018 Date de publication en ligne : 20/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.018 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96417
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 76 - 100[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] analyse de variance
[Termes IGN] fusion d'images
[Termes IGN] image Kompsat
[Termes IGN] image à haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Pléiades-HR
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] netteté
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Unmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Unmixing-based Sentinel-2 downscaling for urban land cover mapping Type de document : Article/Communication Auteurs : Fei Xu, Auteur ; Ben Somers, Auteur Année de publication : 2021 Article en page(s) : pp 133 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] bande spectrale
[Termes IGN] Berlin
[Termes IGN] Bruxelles
[Termes IGN] cartographie urbaine
[Termes IGN] Cologne
[Termes IGN] corrélation
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] matrice de co-occurrence
[Termes IGN] occupation du solRésumé : (auteur) With the launch of Sentinel-2 new opportunities for large scale urban mapping arise. However, the spectral information embedded in the Sentinel-2 20 m spatial resolution bands cannot yet be fully explored in heterogeneous urban landscapes. The 20 m image pixels are often composed of different land covers, resulting in a difficult to interpret mixed pixel spectrum. Here, we propose an unmixing-based image fusion algorithm (UnFuSen2) that self-adapts to the spectral variability of varying land covers and improves the image fusion accuracy by constraining the unmixing equations on the basis of spectral mixing models and the correlation between spectral bands of coarse and fine spatial resolution, respectively. When compared to alternative state-of-the-art downscaling methods UnFuSen2 consistently showed the highest accuracy when applied across test sites in three different European cities (RMSEUnFuSen2 = 203 vs RMSEalternatives = [252, 337]). In a next step, we applied Multiple Endmember Spectral Mixture Analysis (MESMA) on the downscaled Sentinel-2 image cube (i.e. ten 10 m bands) to generate subpixel urban land cover fractions. We compared our MESMA results against the traditional MESMA output as applied on the original Sentinel-2 image cube (i.e. four 10 m bands and six 20 m bands) and tested its robustness against reference data obtained over all three study sites. Results revealed an average decrease in RMSE of respectively 18% and 8% for impervious surface and vegetation fractions when our approach was compared to the traditional MESMA outcomes. Numéro de notice : A2021-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.009 Date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96419
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 133 - 154[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt