Forests . vol 11 n°11Paru le : 01/11/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
[article]
Titre : Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery Type de document : Article/Communication Auteurs : Astrid Helena Huechacona-Ruiz, Auteur ; Juan Manuel Dupuy, Auteur ; Naomi B. Schwartz, Auteur Année de publication : 2020 Article en page(s) : n° 1234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] arbre caducifolié
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] forêt tropicale
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance
[Termes IGN] texture d'image
[Termes IGN] YucatanRésumé : (auteur) In tropical dry forests, deciduousness (i.e., leaf shedding during the dry season) is an important adaptation of plants to cope with water limitation, which helps trees adjust to seasonal drought. Deciduousness is also a critical factor determining the timing and duration of carbon fixation rates, and affecting energy, water, and carbon balance. Therefore, quantifying deciduousness is vital to understand important ecosystem processes in tropical dry forests. The aim of this study was to map tree species deciduousness in three types of tropical dry forests along a precipitation gradient in the Yucatan Peninsula using Sentinel-2 imagery. We propose an approach that combines reflectance of visible and near-infrared bands, normalized difference vegetation index (NDVI), spectral unmixing deciduous fraction, and several texture metrics to estimate the spatial distribution of tree species deciduousness. Deciduousness in the study area was highly variable and decreased along the precipitation gradient, while the spatial variation in deciduousness among sites followed an inverse pattern, ranging from 91.5 to 43.3% and from 3.4 to 9.4% respectively from the northwest to the southeast of the peninsula. Most of the variation in deciduousness was predicted jointly by spectral variables and texture metrics, but texture metrics had a higher exclusive contribution. Moreover, including texture metrics as independent variables increased the variance of deciduousness explained by the models from R2 = 0.56 to R2 = 0.60 and the root mean square error (RMSE) was reduced from 16.9% to 16.2%. We present the first spatially continuous deciduousness map of the three most important vegetation types in the Yucatan Peninsula using high-resolution imagery. Numéro de notice : A2020-756 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111234 Date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/f11111234 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96468
in Forests > vol 11 n°11 (November 2020) . - n° 1234[article]Urban tree species identification and carbon stock mapping for urban green planning and management / MD Abdul Choudhury in Forests, vol 11 n°11 (November 2020)
[article]
Titre : Urban tree species identification and carbon stock mapping for urban green planning and management Type de document : Article/Communication Auteurs : MD Abdul Choudhury, Auteur ; Ernesto Marcheggiani, Auteur ; Francesca Despini, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] arbre urbain
[Termes IGN] cartographie écologique
[Termes IGN] déboisement
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données allométriques
[Termes IGN] données dendrométriques
[Termes IGN] Emilie-Romagne (Italie)
[Termes IGN] gestion urbaine
[Termes IGN] modèle de croissance végétale
[Termes IGN] photo-interprétation assistée par ordinateur
[Termes IGN] planification urbaine
[Termes IGN] puits de carbone
[Termes IGN] structure-from-motion
[Termes IGN] ville durableRésumé : (auteur) Recently, the severe intensification of atmospheric carbon has highlighted the importance of urban tree contributions in atmospheric carbon mitigations in city areas considering sustainable urban green planning and management systems. Explicit and timely information on urban trees and their roles in the atmospheric Carbon Stock (CS) are essential for policymakers to take immediate actions to ameliorate the effects of deforestation and their worsening outcomes. In this study, a detailed methodology for urban tree CS calibration and mapping was developed for the small urban area of Sassuolo in Italy. For dominant tree species classification, a remote sensing approach was applied, utilizing a high-resolution WV3 image. Five dominant species were identified and classified by applying the Object-Based Image Analysis (OBIA) approach with an overall accuracy of 78%. The CS calibration was done by utilizing an allometric model based on the field data of tree dendrometry—i.e., Height (H) and Diameter at Breast Height (DBH). For geometric measurements, a terrestrial photogrammetric approach known as Structure-from-Motion (SfM) was utilized. Out of 22 randomly selected sample plots of 100 square meters (10 m × 10 m) each, seven plots were utilized to validate the results of the CS calibration and mapping. In this study, CS mapping was done in an efficient and convenient way, highlighting higher CS and lower CS zones while recognizing the dominant tree species contributions. This study will help city planners initiate CS mapping and predict the possible CS for larger urban regions to ensure a sustainable urban green management system. Numéro de notice : A2020-757 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111226 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.3390/f11111226 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96470
in Forests > vol 11 n°11 (November 2020) . - N° 1226[article]Analyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests / Patricia Adame in Forests, vol 11 n°11 (November 2020)
[article]
Titre : Analyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests Type de document : Article/Communication Auteurs : Patricia Adame, Auteur ; Isabel Canellas, Auteur ; Daniel Moreno-Fernández, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1219 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse
[Termes IGN] Espagne
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière durable
[Termes IGN] incendie de forêt
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle dynamique
[Termes IGN] politique forestière
[Termes IGN] puits de carbone
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Research Highlights: This is the first study that has considered forest management and wildfires in the balance of living biomass and carbon stored in Mediterranean forests. Background and Objectives: The Kyoto Protocol and Paris Agreement request countries to estimate and report carbon emissions and removals from the forest in a transparent and reliable way. The aim of this study is to forecast the carbon stored in the living biomass of Spanish forests for the period 2000–2050 under two forest management alternatives and three forest wildfires scenarios. Materials and Methods: To produce these estimates, we rely on data from the Spanish National Forest Inventory (SNFI) and we use the European Forestry Dynamics Model (EFDM). SNFI plots were classified according to five static (forest type, known land-use restrictions, ownership, stand structure and bioclimatic region) and two dynamic factors (quadratic mean diameter and total volume). The results were validated using data from the latest SNFI cycle (20-year simulation). Results: The increase in wildfire occurrence will lead to a decrease in biomass/carbon between 2000 and 2050 of up to 22.7% in the medium–low greenhouse gas emissions scenario (B2 scenario) and of up to 32.8% in the medium–high greenhouse gas emissions scenario (A2 scenario). Schoolbook allocation management could buffer up to 3% of wildfire carbon loss. The most stable forest type under both wildfire scenarios are Dehesas. As regards bioregions, the Macaronesian area is the most affected and the Alpine region, the least affected. Our validation test revealed a total volume underestimation of 2.2% in 20 years. Conclusions: Forest wildfire scenarios provide more realistic simulations in Mediterranean forests. The results show the potential benefit of forest management, with slightly better results in schoolbook forest management compared to business-as-usual forest management. The EFDM harmonized approach simulates the capacity of forests to store carbon under different scenarios at national scale in Spain, providing important information for optimal decision-making on forest-related policies. Numéro de notice : A2020-758 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111219 Date de publication en ligne : 19/11/2020 En ligne : https://doi.org/10.3390/f11111219 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96471
in Forests > vol 11 n°11 (November 2020) . - n° 1219[article]Analysis of the effect of climate warming on paludification processes: Will soil conditions limit the adaptation of Northern boreal forests to climate change? A synthesis / Ahmed Laamrani in Forests, vol 11 n°11 (November 2020)
[article]
Titre : Analysis of the effect of climate warming on paludification processes: Will soil conditions limit the adaptation of Northern boreal forests to climate change? A synthesis Type de document : Article/Communication Auteurs : Ahmed Laamrani, Auteur ; Osvaldo Valeria, Auteur ; Abdelghani Chehbouni, Auteur ; Yves Bergeron, Auteur Année de publication : 2020 Article en page(s) : n° 1176 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] écosystème forestier
[Termes IGN] forêt boréale
[Termes IGN] humidité du sol
[Termes IGN] paludification
[Termes IGN] précipitation
[Termes IGN] température au sol
[Termes IGN] tourbe
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Northern boreal forests are characterized by accumulation of accumulation of peat (e.g., known as paludification). The functioning of northern boreal forest species and their capacity to adapt to environmental changes appear to depend on soil conditions. Climate warming is expected to have particularly pronounced effects on paludified boreal ecosystems and can alter current forest species composition and adaptation by changing soil conditions such as moisture, temperature regimes, and soil respiration. In this paper, we review and synthesize results from various reported studies (i.e., 88 research articles cited hereafter) to assess the effects of climatic warming on soil conditions of paludified forests in North America. Predictions that global warming may increase the decomposition rate must be considered in combination with its impact on soil moisture, which appears to be a limiting factor. Local adaptation or acclimation to current climatic conditions is occurring in boreal forests, which is likely to be important for continued ecosystem stability in the context of climate change. The most commonly cited response of boreal forest species to global warming is a northward migration that tracks the climate and soil conditions (e.g., temperature and moisture) to which they are adapted. Yet, some constraints may influence this kind of adaptation, such as water availability, changes in fire regimes, decomposer adaptations, and the dynamic of peat accumulation. In this paper, as a study case, we examined an example of potential effects of climatic warming on future paludification changes in the eastern lowland region of Canada through three different combined hypothetical scenarios based on temperature and precipitation (e.g., unchanged, increase, or decrease). An increase scenario in precipitation will likely favor peat accumulation in boreal forest stands prone to paludification and facilitate forested peatland expansion into upland forest, while decreased or unchanged precipitation combined with an increase in temperature will probably favor succession of forested peatlands to upland boreal forests. Each of the three scenarios were discussed in this study, and consequent silvicultural treatment options were suggested for each scenario to cope with anticipated soil and species changes in the boreal forests. We concluded that, despite the fact boreal soils will not constrain adaptation of boreal forests, some consequences of climatic warming may reduce the ability of certain species to respond to natural disturbances such as pest and disease outbreaks, and extreme weather events. Numéro de notice : A2020-759 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111176 Date de publication en ligne : 07/11/2020 En ligne : https://doi.org/10.3390/f11111176 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96472
in Forests > vol 11 n°11 (November 2020) . - n° 1176[article]