Descripteur
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning / Hailing Zhou in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning Type de document : Article/Communication Auteurs : Hailing Zhou, Auteur ; Lei Wei, Auteur ; Chee Peng Lim, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 7074 - 7085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] méthode robuste
[Termes IGN] modèle sac-de-mots
[Termes IGN] objet mobile
[Termes IGN] PMVS
[Termes IGN] SIFT (algorithme)
[Termes IGN] transformation de Radon
[Termes IGN] véhiculeRésumé : (auteur) This paper presents a novel approach to automatically detect and count cars in different aerial images, which can be satellite or unmanned aerial vehicle (UAV) images. Variations in satellite and/or UAV data make it particularly challenging to have a robust method that works properly on a variety of images. A solution based on the bag-of-words (BoW) model is explored in this paper due to its invariance characteristic and highly stable performance in object/scene categorization. Different from categorization tasks, vehicle detection needs to localize the positions of cars in images. To make BoW suitable for this purpose, we extensively improve the methodology in three aspects, namely, by introducing a recently proposed feature representation, i.e., the local steering kernel descriptor, adding spatial structure constraints, and developing an orientation aware scanning mechanism to produce detection with “one-window-one-car” results. Experiments are conducted on various aerial images with large variations, which consist of data from two public databases, e.g., the Overhead Imagery Research Data Set and Vehicle Detection in Aerial Imagery, as well as other satellite and UAV images. The results demonstrate the effectiveness and robustness of the proposed method. Compared with existing techniques, the proposed method is applicable to a wider range of aerial images. Numéro de notice : A2018-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848243 Date de publication en ligne : 17/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848243 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91654
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7074 - 7085[article]