Descripteur
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
[article]
Titre : Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds Type de document : Article/Communication Auteurs : Xin Xu, Auteur ; Federico Iuricich, Auteur ; Kim Calders, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] houppier
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] topologieRésumé : (auteur) Terrestrial laser scanning (TLS) is a ground-based approach to rapidly acquire 3D point clouds via Light Detection and Ranging (LiDAR) technologies. Quantifying tree-scale structure from TLS point clouds requires segmentation, yet there is a lack of automated methods available to the forest ecology community. In this work, we consider the problem of segmenting a forest TLS point cloud into individual tree point clouds. Different approaches have been investigated to identify and segment individual trees in a forest point cloud. Typically these methods require intensive parameter tuning and time-consuming user interactions, which has inhibited the application of TLS to large area research. Our goal is to define a new automated segmentation method that lifts these limitations. Our Topology-based Tree Segmentation (TTS) algorithm uses a new topological technique rooted in discrete Morse theory to segment input point clouds into single trees. TTS algorithm identifies distinctive tree structures (i.e., tree bottoms and tops) without user interactions. Tree tops and bottoms are then used to reconstruct single trees using the notion of relevant topological features. This mathematically well-established notion helps distinguish between noise and relevant tree features. To demonstrate the generality of our approach, we present an evaluation using multiple datasets, including different forest types and point densities. We also compare our TTS approach with open-source tree segmentation methods. The experiments show that we achieve a higher segmentation accuracy when performing point-by-point validation. Without expensive user interactions, TTS algorithm is promising for greater usage of TLS point clouds in the forest ecology community, such as fire risk and behavior modeling, estimating tree-level biodiversity structural traits, and above-ground biomass monitoring. Numéro de notice : A2023-129 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103145 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103145 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102517
in International journal of applied Earth observation and geoinformation > vol 116 (February 2023) . - n° 103145[article]Individual tree extraction from UAV lidar point clouds based on self-adaptive mean shift segmentation / Zhenyang Hui in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2021 (July 2021)
[article]
Titre : Individual tree extraction from UAV lidar point clouds based on self-adaptive mean shift segmentation Type de document : Article/Communication Auteurs : Zhenyang Hui, Auteur ; N. Li, Auteur ; Y. Xia, Auteur ; Penggen Cheng, Auteur ; Y. He, Auteur Année de publication : 2021 Conférence : ISPRS 2021, Commission 1, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice on-line France OA Annals Commission 1 Article en page(s) : pp 25 - 30 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de décalage moyen
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Unman aerial vehicle (UAV) LiDAR has been widely used in the field of forestry. Individual tree extraction is a key step for forest inventory. Although many individual tree extraction methods have been proposed, the individual tree extraction accuracy is still low due to the complex forest environments. Moreover, many parameters in these methods generally need to be set. Thus, the degree of automation of the methods is generally low. To solve these problems, this paper proposed an automatic mean shift segmentation method, in which the kernel bandwidths can be calculated self-adaptively. Meanwhile, a hierarchy mean shift segmentation technique was proposed to extract individual tree gradually. A plot-level UAV LiDAR tree dataset was adopted for testing the performance of the proposed method. Experimental results showed that the proposed method can achieve better individual tree extraction result without any parameter setting. Compared with the traditional mean shift segmentation method, both the completeness and mean accuracy of the proposed method are higher. Numéro de notice : A2021-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-1-2021-25-2021 Date de publication en ligne : 17/06/2021 En ligne : https://doi.org/10.5194/isprs-annals-V-1-2021-25-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97950
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-1-2021 (July 2021) . - pp 25 - 30[article]Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image / Genki Takahashi in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image Type de document : Article/Communication Auteurs : Genki Takahashi, Auteur ; H. Masuda, Auteur Année de publication : 2021 Article en page(s) : pp 67 - 74 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement d'arbres
[Termes IGN] apprentissage automatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Tokyo (Japon)
[Termes IGN] zone urbaineRésumé : (auteur) Efficient management of roadside trees for local governments is important. Mobile Mapping System (MMS) equipped with a high-density LiDAR scanner has the possibility to be applied to estimate DBH of roadside trees using point clouds. In this study, we propose a method for detecting roadside trees and estimating their DBHs automatically from MMS point clouds. In our method, point clouds captured using the MMS are mapped on a 2D image plane, and they are converted into a wireframe model by connecting adjacent points. Then, geometric features are calculated for each point in the wireframe model. Tree points are detected using a machine learning technique. The DBH of each tree is calculated using vertically aligned circles extracted from the wireframe model. Our method allows robustly calculating the DBH even if there is a hump at breast height. We evaluated our method using actual MMS data measured in an urban area in Tokyo. Our method achieved a high extraction performance of 100 percent of precision and 95.1 percent of recall for 102 roadside trees. The average accuracy of the DBH was 2.0 cm. These results indicate that our method is useful for the efficient management of roadside trees. Numéro de notice : A2021-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-67-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-67-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97956
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 67 - 74[article]Tree extraction and estimation of walnut structure parameters using airborne LiDAR data / Javier Estornell in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
[article]
Titre : Tree extraction and estimation of walnut structure parameters using airborne LiDAR data Type de document : Article/Communication Auteurs : Javier Estornell, Auteur ; Edyta Hadas, Auteur ; J. Marti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 102273 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] dendrométrie
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Espagne
[Termes IGN] extraction d'arbres
[Termes IGN] houppier
[Termes IGN] Juglans regia
[Termes IGN] modèle numérique de terrain
[Termes IGN] plantation agricole
[Termes IGN] semis de pointsRésumé : (auteur) The development of new tools based on remote sensing data in agriculture contributes to cost reduction, increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct identification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for crown diameter, stem diameter, and stem volume with coefficient of determination values (R2) equal to 0.95, 0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m3 (21.55%), respectively. The models that gave the lowest R2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree canopies was observed. Results of this study generate valuable information, which can be applied for improving the management of walnut plantations. Numéro de notice : A2021-239 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102273 Date de publication en ligne : 13/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102273 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97265
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102273[article]Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Asli Ozdarici-Ok, Auteur Année de publication : 2020 Article en page(s) : pp 557-569 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse de groupement
[Termes IGN] Citrus limon
[Termes IGN] détection de contours
[Termes IGN] état de l'art
[Termes IGN] extraction d'arbres
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stochastique
[Termes IGN] TurquieRésumé : (Auteur) In this study, we present an original unified strategy for the precise extraction of individual citrus fruit trees from single digital surface model (DSM) input data. A probabilistic method combining the circular shape information with the knowledge of the local maxima in the DSM has been used for the detection of the candidate trees. An active contour is applied within each detected region to extract the borders of the objects. Thereafter, all extracted objects are seamlessly divided into clusters considering a new feature data set formed by (1) the properties of trees, (2) planting parameters, and (3) neighborhood relations. This original clustering stage has led to two new contributions: (1) particular objects or clustered structures having distinctive characters and relationships other than the citrus objects can be identified and eliminated, and (2) the information revealed by clustering can be used to recover missing citrus objects within and/or nearby each cluster. The main finding of this research is that a successful clustering can provide valuable input for identifying incorrect and missing information in terms of citrus tree extraction. The proposed strategy is validated in eight test sites selected from the northern part of Mersin province of Turkey. The results achieved are also compared with the state-of-the-art methods developed for tree extraction, and the success of the proposed unified strategy is clearly highlighted. Numéro de notice : A2020-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.557 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.557 Format de la ressource électronique : LUR article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95933
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 557-569[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Tree annotations in LiDAR data using point densities and convolutional neural networks / Ananya Gupta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)PermalinkMeasuring stem diameters with TLS in boreal forests by complementary fitting procedure / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)PermalinkA new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)PermalinkSemantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery / Clément Dechesne in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)PermalinkCaractérisation de la végétation de Rennes Métropole par relevé LiDAR en vue de sa modélisation / Clément Doceul (2017)PermalinkAirborne lidar estimation of aboveground forest biomass in the absence of field inventory / António Ferraz in Remote sensing, vol 8 n° 8 (August 2016)PermalinkA novel computer-aided tree species identification method based on burst wind segmentation of 3D bark textures / Alice Ahlem Othmani in Machine Vision and Applications, vol 27 n° 5 (July 2016)PermalinkPTrees: A point-based approach to forest tree extraction from lidar data / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 33 (December 2014)PermalinkDéfinition et identification d'objets sur une image à haute résolution spatiale : Application à la différenciation de types de châtaigneraies / Muriel Bonin in Ingénieries : eau, agriculture, territoires, n° 27 (septembre 2001)Permalink