Annals of GIS / International Association of Chinese Professionals in Geographic Information Science, CPGIS . vol 26 n° 4Paru le : 01/10/2020 |
[n° ou bulletin]
est un bulletin de Annals of GIS / CPGIS International Association of Chinese Professionals in Geographic Information Science (2009 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (October 2020)
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données
[Termes IGN] Kiangsi (Chine)
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 Date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (October 2020) . - pp 329 - 342[article]Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (October 2020)
[article]
Titre : Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) Type de document : Article/Communication Auteurs : Mirza Razi Imam Baig, Auteur ; Ishita Afreen Ahmad, Auteur ; Mohammad Tayyab, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 361 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Andhra Pradesh (Inde ; état)
[Termes IGN] détection de changement
[Termes IGN] érosion côtière
[Termes IGN] géomorphologie locale
[Termes IGN] image Landsat
[Termes IGN] pondération
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (auteur) Coastline or Shoreline calculation is one of the important factors in the finding of coastal accretion and erosion and the study of coastal morphodynamic. Coastal erosion is a tentative hazard for communities especially in coastal areas as it is extremely susceptible to increasing coastal disasters. The study has been conducted along the coast of Vishakhapatnam district, Andhra Pradesh, India with the help of multi-temporal satellite images of 1991 2001, 2011 and 2018. The continuing coastal erosion and accretion rates have been calculated using the Digital Shoreline Analysis System (DSAS). Linear regression rate (LRR), End Point Rate (EPR) and Weighted Linear Regression (WLR) are used for calculating shoreline change rate. Based on calculations the district shoreline has been classified into five categories as high and low erosion, no change and high and low accretion. Out of 135 km, high erosion occupied 5.8 km of coast followed by moderate or low erosion 46.2 km. Almost 34.7 km coastal length showed little or no change. Moderate accretion is found along 30.5 km whereas high accretion trend found around 17.8 km. The outcome of shows that erosion is prevailing in Vishakhapatnam taluk, Ankapalli taluk, Yellamanchili taluk whereas most of the Bhemunipatnam coast is accreting. Natural and manmade activities and phenomena influence the coastal areas in terms of erosion and accretion. The study could be used for further planning and development and also for disaster management authority in the decision-making process in the study area. Numéro de notice : A2020-801 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1815839 Date de publication en ligne : 09/10/2020 En ligne : https://doi.org/10.1080/19475683.2020.1815839 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96724
in Annals of GIS > vol 26 n° 4 (October 2020) . - pp 361 - 376[article]