ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 172Paru le : 01/02/2021 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(2)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021021 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021022 | DEP-RECF | Revue | Nancy | Bibliothèque Nancy IFN | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery Type de document : Article/Communication Auteurs : Rajeev Bhattarai, Auteur ; Parinaz Rahimzadeh-Bajgiran, Auteur ; Aaron R. Weiskittel, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies balsamea
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] défoliation
[Termes IGN] dégradation de la flore
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] insecte phyllophage
[Termes IGN] Nouveau-Brunswick (Canada)
[Termes IGN] Picea abiesRésumé : (auteur) Spruce budworm (Choristoneura fumiferana; SBW) is the most destructive forest pest of northeastern Canada and United States. SBW occurrence as well as the extent and severity of its damage are highly dependent on the characteristics of the forests and the availability of host species namely, spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.). Remote sensing satellite imagery represents a valuable data source for seamless regional-scale mapping of forest composition. This study developed and evaluated new models to map the distribution and abundance of SBW host species at 20 m spatial resolution using Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery in combination with several site variables for a total of 191 variables in northern New Brunswick, Canada using the Random Forest (RF) algorithm. We found Sentinel-2 multi-temporal single spectral bands and numerous spectral vegetation indices (SVIs) yielded the classification of SBW host species with an overall accuracy (OA) of 72.6% and kappa coefficient (K) of 0.65. Incorporating Sentinel-1 SAR data with Sentinel-2 variables coupled with elevation, only marginally improved the performance of the model (OA: 73.0% and K: 0.66). The use of Sentinel-1 SAR data with elevation resulted in a reasonable OA of 57.5% and K of 0.47. These spatially explicit up-to-date SBW host species maps are essential for identifying susceptible forests, monitoring SBW defoliation, and minimizing forest losses from insect impacts at landscape scale in the current SBW outbreak in the region. Numéro de notice : A2021-085 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.023 Date de publication en ligne : 15/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96845
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 28 - 40[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] bande L
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données polarimétriques
[Termes IGN] forêt tropicale
[Termes IGN] Gabon
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] image radar moirée
[Termes IGN] Rotation Forest classification
[Termes IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 Date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 79 - 94[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] adjacence
[Termes IGN] appariement de graphes
[Termes IGN] arc
[Termes IGN] bloc d'ancrage
[Termes IGN] classification orientée objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] jeu de données localisées
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] noeud
[Termes IGN] objet 3D
[Termes IGN] orientation
[Termes IGN] positionnement en intérieur
[Termes IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 Date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 114 - 131[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 Type de document : Article/Communication Auteurs : Matthias Schlögl, Auteur ; Barbara Widhalm, Auteur ; Michael Avian, Auteur Année de publication : 2021 Article en page(s) : pp 132 - 146 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coin réflecteur
[Termes IGN] déformation d'édifice
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] lissage de données
[Termes IGN] pont
[Termes IGN] série temporelle
[Termes IGN] surveillance d'ouvrage
[Termes IGN] variation saisonnière
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) We present a comprehensive methodological framework for structural deformation monitoring of critical infrastructure assets based on differential SAR interferometry. By employing persistent scatterer interferometry, deformation time series in line-of-sight are derived from freely available Sentinel-1 single look complex products. These raw time series are analysed and refined using an extensive post-processing chain to obtain daily rates for vertical and horizontal deformation components. The post-processing includes cleaning, smoothing and a temperature correction to account for different sensing times in ascending and descending orbits. Longitudinal clustering of time series is used to reveal spatial patterns in the single epoch deformation series. Seasonal trend decomposition of the aggregated time series is performed to separate deformation trends from seasonal deformations. The applicability of the framework is showcased at the example of an integral concrete bridge located in the port of Vienna. Results are validated against in situ deformation measurements. The presented framework constitutes a blueprint for the continuous monitoring of critical infrastructure assets using satellite interferometry, which may supplement conventional structural health monitoring. Numéro de notice : A2021-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.001 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96855
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 132 - 146[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening Type de document : Article/Communication Auteurs : Hao Zhang, Auteur ; Jiayi Ma, Auteur Année de publication : 2021 Article en page(s) : pp 223 - 239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] fusion d'images
[Termes IGN] gradient
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] régressionRésumé : (auteur) Pansharpening aims to fuse low-resolution multi-spectral image and high-resolution panchromatic (PAN) image to produce a high-resolution multi-spectral (HRMS) image. In this paper, a new residual learning network based on gradient transformation prior, termed as GTP-PNet, is proposed to generate the high-quality HRMS image with accurate spectral distribution as well as reasonable spatial structure. Different from previous deep models that only rely on supervision of the HRMS reference image, we introduce the gradient transformation prior to the deep model, so as to improve the solution accuracy. Our model consists of two networks, namely gradient transformation network (TNet) and pansharpening network (PNet). TNet is committed to seeking the nonlinear mapping between gradients of PAN and HRMS images, which is essentially a spatial relationship regression of imaging bands in different ranges. PNet is the residual learning network used to generate the HRMS image, which is not only supervised by the HRMS reference image, but also constrained by the trained TNet. As a result, the HRMS image generated by PNet not only approximates the HRMS reference image in the spectral distribution, but also conforms to the gradient transformation prior in the spatial structure. Experimental results demonstrate the significant superiority of our method over the current state-of-the-arts in terms of both subjective visual effect and quantitative metrics. We also apply our method to produce the HR normalized difference vegetation index in remote sensing, which can achieve the best performance. Moreover, our method is much competitive compared with the state-of-the-art alternatives in running efficiency. Numéro de notice : A2021-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 Date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96859
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 223 - 239[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt