Remote sensing . vol 13 n° 1Paru le : 01/01/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse multicritère
[Termes IGN] analyse spectrale
[Termes IGN] construction
[Termes IGN] déchet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gestion urbaine
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation hiérarchique
[Termes IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 158[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution Type de document : Article/Communication Auteurs : Dimitri I. Rukhovitch, Auteur ; Polina V. Koroleva, Auteur ; Danila D. Rukhovitch, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dégradation des sols
[Termes IGN] distribution spatiale
[Termes IGN] érosion
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Russie
[Termes IGN] surface cultivée
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground surveys. Currently, machine learning methods are increasingly being used to analyze remote sensing data. In this paper, the task is set to apply deep machine learning methods and methods of vegetation indices calculation to automate the detection of areas of soil degradation development on arable land. In the course of the work, a method was developed for determining the location of degraded areas of soil cover on arable fields. The method is based on the use of multi-temporal remote sensing data. The selection of suitable remote sensing data scenes is based on deep machine learning. Deep machine learning was based on an analysis of 1028 scenes of Landsats 4, 5, 7 and 8 on 530 agricultural fields. Landsat data from 1984 to 2019 was analyzed. Dataset was created manually for each pair of “Landsat scene”/“agricultural field number”(for each agricultural field, the suitability of each Landsat scene was assessed). Areas of soil degradation were calculated based on the frequency of occurrence of low NDVI values over 35 years. Low NDVI values were calculated separately for each suitable fragment of the satellite image within the boundaries of each agricultural field. NDVI values of one-third of the field area and lower than the other two-thirds were considered low. During testing, the method gave 12.5% of type I errors (false positive) and 3.8% of type II errors (false negative). Independent verification of the method was carried out on six agricultural fields on an area of 713.3 hectares. Humus content and thickness of the humus horizon were determined in 42 ground-based points. In arable land degradation areas identified by the proposed method, the probability of detecting soil degradation by field methods was 87.5%. The probability of detecting soil degradation by ground-based methods outside the predicted regions was 3.8%. The results indicate that deep machine learning is feasible for remote sensing data selection based on a binary dataset. This eliminates the need for intermediate filtering systems in the selection of satellite imagery (determination of clouds, shadows from clouds, open soil surface, etc.). Direct selection of Landsat scenes suitable for calculations has been made. It allows automating the process of constructing soil degradation maps. Numéro de notice : A2021-074 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010155 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010155 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96810
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 155[article]SBAS-aided GPS positioning with an extended ionosphere map at the boundaries of WAAS service area / Mingyu Kim in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : SBAS-aided GPS positioning with an extended ionosphere map at the boundaries of WAAS service area Type de document : Article/Communication Auteurs : Mingyu Kim, Auteur ; Jeongrae Kim, Auteur Année de publication : 2021 Article en page(s) : n° 151 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] correction
[Termes IGN] correction ionosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] GPS assisté pour la navigation (technologies)
[Termes IGN] orbite
[Termes IGN] positionnement par GNSS
[Termes IGN] retard ionosphèrique
[Termes IGN] Wide Area Augmentation SystemRésumé : (auteur) Space-based augmentation system (SBAS) provides correction information for improving the global navigation satellite system (GNSS) positioning accuracy in real-time, which includes satellite orbit/clock and ionospheric delay corrections. At SBAS service area boundaries, the correction is not fully available to GNSS users and only a partial correction is available, mostly satellite orbit/clock information. By using the geospatial correlation property of the ionosphere delay information, the ionosphere correction coverage can be extended by a spatial extrapolation algorithm. This paper proposes extending SBAS ionosphere correction coverage by using a biharmonic spline extrapolation algorithm. The wide area augmentation system (WAAS) ionosphere map is extended and its ionospheric delay error is compared with the GPS Klobuchar model. The mean ionosphere error reduction at low latitude is 52.3%. The positioning accuracy of the extended ionosphere correction method is compared with the accuracy of the conventional SBAS positioning method when only a partial set of SBAS corrections are available. The mean positioning error reduction is 44.8%, and the positioning accuracy improvement is significant at low latitude. Numéro de notice : A2021-075 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010151 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010151 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96813
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 151[article]The Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : The Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos Type de document : Article/Communication Auteurs : Gonzalo Simarro, Auteur ; Daniel Calvete, Auteur ; Theocharis A. Plomaritis, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] aberration instrumentale
[Termes IGN] bathymétrie
[Termes IGN] distorsion d'image
[Termes IGN] eaux côtières
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] étalonnage en vol
[Termes IGN] image captée par drone
[Termes IGN] lentille
[Termes IGN] réalité de terrain
[Termes IGN] sondeur monofaisceauRésumé : (auteur) Measuring the nearshore bathymetry is critical in coastal management and morphodynamic studies. The recent advent of Unmanned Aerial Vehicles (UAVs), in combination with coastal video monitoring techniques, allows for an alternative and low cost evaluation of the nearshore bathymetry. Camera calibration and stabilization is a critical issue in bathymetry estimation from video systems. This work introduces a new methodology in order to obtain such bathymetries, and it compares the results to echo-sounder ground truth data. The goal is to gain a better understanding on the influence of the camera calibration and stabilization on the inferred bathymetry. The results show how the proposed methodology allows for accurate evaluations of the bathymetry, with overall root mean square errors in the order of 40 cm. It is shown that the intrinsic calibration of the camera, related to the lens distortion, is the most critical aspect. Here, the intrinsic calibration that was obtained directly during the flight yields the best results. Numéro de notice : A2021-076 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010150 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96814
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 150[article]Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images Type de document : Article/Communication Auteurs : Haibin Gu, Auteur ; Zhe Lin, Auteur ; Wenxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] humidité du sol
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image thermique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression linéaire
[Termes IGN] stress hydrique
[Termes IGN] texture du solRésumé : (auteur) Surface soil water content (SWC) is a major determinant of crop production, and accurately retrieving SWC plays a crucial role in effective water management. Unmanned aerial systems (UAS) can acquire images with high temporal and spatial resolutions for SWC monitoring at the field scale. The objective of this study was to develop an algorithm to retrieve SWC by integrating soil texture into a vegetation index derived from UAS multispectral and thermal images. The normalized difference vegetation index (NDVI) and surface temperature (Ts) derived from the UAS multispectral and thermal images were employed to construct the temperature vegetation dryness index (TVDI) using the trapezoid model. Soil texture was incorporated into the trapezoid model based on the relationship between soil texture and the lower and upper limits of SWC to form the texture temperature vegetation dryness index (TTVDI). For validation, 128 surface soil samples, 84 in 2019 and 44 in 2020, were collected to determine soil texture and gravimetric SWC. Based on the linear regression models, the TTVDI had better performance in estimating SWC compared to the TVDI, with an increase in R2 (coefficient of determination) by 14.5% and 14.9%, and a decrease in RMSE (root mean square error) by 46.1% and 10.8%, for the 2019 and 2020 samples, respectively. The application of the TTVDI model based on high-resolution multispectral and thermal UAS images has the potential to accurately and timely retrieve SWC at the field scale. Numéro de notice : A2021-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010145 Date de publication en ligne : 04/01/2021 En ligne : https://doi.org/10.3390/rs13010145 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96815
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 145[article]Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Wu Bo, Auteur Année de publication : 2021 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] CityGML
[Termes IGN] contrainte géométrique
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] géomètrie algorithmique
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] relation topologique
[Termes IGN] semis de points
[Termes IGN] ville intelligenteRésumé : (auteur) The complexity and variety of buildings and the defects of point cloud data are the main challenges faced by 3D urban reconstruction from point clouds, especially in metropolitan areas. In this paper, we developed a method that embeds multiple relations into a procedural modelling process for the automatic 3D reconstruction of buildings from photogrammetric point clouds. First, a hybrid tree of constructive solid geometry and boundary representation (CSG-BRep) was built to decompose the building bounding space into multiple polyhedral cells based on geometric-relation constraints. The cells that approximate the shapes of buildings were then selected based on topological-relation constraints and geometric building models were generated using a reconstructing CSG-BRep tree. Finally, different parts of buildings were retrieved from the CSG-BRep trees, and specific surface types were recognized to convert the building models into the City Geography Markup Language (CityGML) format. The point clouds of 105 buildings in a metropolitan area in Hong Kong were used to evaluate the performance of the proposed method. Compared with two existing methods, the proposed method performed the best in terms of robustness, regularity, and topological correctness. The CityGML building models enriched with semantic information were also compared with the manually digitized ground truth, and the high level of consistency between the results suggested that the produced models will be useful in smart city applications. Numéro de notice : A2021-078 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010129 Date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.3390/rs13010129 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96820
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 13[article]Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring Type de document : Article/Communication Auteurs : Edoardo Grottoli, Auteur ; Mélanie Biausque, Auteur ; David Rogers, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 95 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] carte de profondeur
[Termes IGN] données lidar
[Termes IGN] dune
[Termes IGN] érosion côtière
[Termes IGN] filtrage de points
[Termes IGN] image captée par drone
[Termes IGN] image numérisée
[Termes IGN] modèle numérique de surface
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] surveillance du littoralRésumé : (auteur) Recent advances in structure-from-motion (SfM) techniques have proliferated the use of unmanned aerial vehicles (UAVs) in the monitoring of coastal landform changes, particularly when applied in the reconstruction of 3D surface models from historical aerial photographs. Here, we explore a number of depth map filtering and point cloud cleaning methods using the commercial software Agisoft Metashape Pro to determine the optimal methodology to build reliable digital surface models (DSMs). Twelve different aerial photography-derived DSMs are validated and compared against light detection and ranging (LiDAR)- and UAV-derived DSMs of a vegetated coastal dune system that has undergone several decades of coastline retreat. The different studied methods showed an average vertical error (root mean square error, RMSE) of approximately 1 m, with the best method resulting in an error value of 0.93 m. In our case, the best method resulted from the removal of confidence values in the range of 0–3 from the dense point cloud (DPC), with no filter applied to the depth maps. Differences among the methods examined were associated with the reconstruction of the dune slipface. The application of the modern SfM methodology to the analysis of historical aerial (vertical) photography is a novel (and reliable) new approach that can be used to better quantify coastal dune volume changes. DSMs derived from suitable historical aerial photographs, therefore, represent dependable sources of 3D data that can be used to better analyse long-term geomorphic changes in coastal dune areas that have undergone retreat. Numéro de notice : A2021-079 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010095 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.3390/rs13010095 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96821
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 95[article]