Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > hydrographie de surface > eau de surface > lac > lac glaciaire
lac glaciaire |
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)
[article]
Titre : A machine learning method for Arctic lakes detection in the permafrost areas of Siberia Type de document : Article/Communication Auteurs : Piotr Janiec, Auteur ; Jakub Nowosad, Auteur ; Sbigniew Zwoliński, Auteur Année de publication : 2023 Article en page(s) : n° 2163923 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] lac glaciaire
[Termes IGN] MERIT
[Termes IGN] modèle numérique de surface
[Termes IGN] pergélisol
[Termes IGN] Short Waves InfraRed
[Termes IGN] SibérieRésumé : (auteur) Thermokarst lakes are the main components of the vast Arctic and subarctic landscapes. These lakes can serve as geoindicators of permafrost degradation; therefore, proper lake distribution assessment methods are necessary. In this study, we compared four machine learning methods to improve existing lake detection systems. The northern part of Yakutia was selected as the study area owing to its complex environment. We used data from Landsat 8 and spectral indices to take into account the spectral characteristics of the lakes, and MERIT DEM data to take into account the topography. The lowest accuracy was found for the classification and regression trees (CART) method (overall accuracy = 81%). On the other hand, the random forests (RF) classification provided the best results (overall accuracy = 92%), and only this classification coped well in all problematic areas, such as shaded and humid areas, near steep slopes, burn scars, and rivers. The altitude and bands SWIR1 (Short wave infrared 1), SWIR2 (Short wave infrared 2), and Green were the most important. Spectral indices did not have significant impact on the classification results in the specific conditions of the thermokarst lakes environment. 17,700 lakes were identified with the total area of 271.43 km2. Numéro de notice : A2023-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2163923 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2163923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103156
in European journal of remote sensing > vol 56 n° 1 (2023) . - n° 2163923[article]A second-order attention network for glacial lake segmentation from remotely sensed imagery / Shidong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : A second-order attention network for glacial lake segmentation from remotely sensed imagery Type de document : Article/Communication Auteurs : Shidong Wang, Auteur ; Maria V. Peppa, Auteur ; Wen Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 289 - 301 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] changement climatique
[Termes IGN] covariance
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] itération
[Termes IGN] lac glaciaire
[Termes IGN] réflectance de surface
[Termes IGN] segmentation d'image
[Termes IGN] tenseurRésumé : (auteur) Climate change is increasing the risk of glacial lake outburst floods (GLOFs) in many of the world’s most vulnerable and high mountain regions. Simultaneously, remote sensing technologies now facilitate continuous monitoring of glacial lake evolution around the globe, although accurate and reliable automated glacial lake mapping from satellite data remains challenging. In this study, a Second-order Attention Network (SoAN) is devised for the automated segmentation of lakes from satellite imagery. In particular, a novel Second-order Attention Module (SoAM) is proposed to capture the long-range spatial dependencies and establish channel attention derived from the covariance representations of local features. Furthermore, as the dimensions of the input and output tensors are identical and it simply relies on matrix calculations, the proposed SoAM can be embedded into different positions of a given architecture while maintaining similar reference speed. The designed network is implemented on Landsat-8 imagery and outputs are compared against representative deep learning models, demonstrating improved results with a Dice of 81.02% and a F2 Score of 85.17%. Numéro de notice : A2022-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.05.007 Date de publication en ligne : 29/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.05.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100814
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 289 - 301[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Classification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data / Prateek Verma in Geocarto international, vol 34 n° 10 ([15/07/2019])
[article]
Titre : Classification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data Type de document : Article/Communication Auteurs : Prateek Verma, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2019 Article en page(s) : pp 1075 - 1088 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement climatique
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Sentinel-MSI
[Termes IGN] lac glaciaire
[Termes IGN] Normalized Difference Water Index
[Termes IGN] seuillage d'image
[Termes IGN] Uttarakhand (Inde ; état)Résumé : (auteur) It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier. Numéro de notice : A2019-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1469677 Date de publication en ligne : 15/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1469677 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93220
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1075 - 1088[article]Recent variations of supraglacial lakes on the Baltoro Glacier in the central Karakoram Himalaya and its possible teleconnections with the pacific decadal oscillation / Bijeesh Kozhikkodan Veettil in Geocarto international, vol 31 n° 1 - 2 (January - February 2016)
[article]
Titre : Recent variations of supraglacial lakes on the Baltoro Glacier in the central Karakoram Himalaya and its possible teleconnections with the pacific decadal oscillation Type de document : Article/Communication Auteurs : Bijeesh Kozhikkodan Veettil, Auteur ; Nilceia Bianchini, Auteur ; Ulisses Franz Bremer, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 109 - 119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] analyse diachronique
[Termes IGN] El Niño-Southern oscillation
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] lac glaciaire
[Termes IGN] Pacifique (océan)Résumé : (Auteur) This study discusses the formation and variations of supraglacial lakes on the Baltoro glacier system in the central Karakoram Himalaya during the last four decades. We mapped supraglacial lakes on the Baltoro Glacier from 1978 to 2014 using Landsat MSS, TM, ETM + and LCDM images. Most of the glacial lakes were formed or expanded during the late 1970s–2008. After 2008, the total number and the area of glacial lakes were found to be lesser compared to previous years. We tried to find any teleconnections exists between the glacial lake changes in this region and the pacific decadal oscillation (PDO), which entered its prolonged warm regime in the late 1970s and again to its cold regime in 2008, based on observational investigation. The decrease in the number and area of the supraglacial lakes after 2008 is hypothesised to be linked with the recent cold phase of PDO. Numéro de notice : A2016-205 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2015.1041565 Date de publication en ligne : 20/05/2015 En ligne : http://www.tandfonline.com/doi/full/10.1080/10106049.2015.1041565 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79867
in Geocarto international > vol 31 n° 1 - 2 (January - February 2016) . - pp 109 - 119[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2016011 RAB Revue Centre de documentation En réserve L003 Disponible