Forest ecosystems / Beijing Forestry University (Pékin, Chine) . vol 7Mention de date : 2020 Paru le : 01/06/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data / Johannes Schumacher in Forest ecosystems, vol 7 (2020)
[article]
Titre : Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data Type de document : Article/Communication Auteurs : Johannes Schumacher, Auteur ; Marius Hauglin, Auteur ; Rasmus Astrup, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte forestière
[Termes IGN] dendrochronologie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] gestion forestière
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Norvège
[Termes IGN] peuplement forestier
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] semis de pointsRésumé : (auteur) Background: The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age.
Results: The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively.
Conclusions: Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.Numéro de notice : A2020-811 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00274-9 Date de publication en ligne : 10/11/2020 En ligne : https://doi.org/10.1186/s40663-020-00274-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96983
in Forest ecosystems > vol 7 (2020) . - n° 60[article]Improving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass / Christoph Kleinn in Forest ecosystems, vol 7 (2020)
[article]
Titre : Improving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass Type de document : Article/Communication Auteurs : Christoph Kleinn, Auteur ; Magnussen, Steen, Auteur ; Nils Nölke, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Basse-Saxe (Allemagne)
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] écologie forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] parcelle forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) We contrast a new continuous approach (CA) for estimating plot-level above-ground biomass (AGB) in forest inventories with the current approach of estimating AGB exclusively from the tree-level AGB predicted for each tree in a plot, henceforth called DA (discrete approach). With the CA, the AGB in a forest is modelled as a continuous surface and the AGB estimate for a fixed-area plot is computed as the integral of the AGB surface taken over the plot area. Hence with the CA, the portion of the biomass of in-plot trees that extends across the plot perimeter is ignored while the biomass from trees outside of the plot reaching inside the plot is added. We use a sampling simulation with data from a fully mapped two hectare area to illustrate that important differences in plot-level AGB estimates can emerge. Ideally CA-based estimates of mean AGB should be less variable than those derived from the DA. If realized, this difference translates to a higher precision from field sampling, or a lower required sample size. In our case study with a target precision of 5% (i.e. relative standard error of the estimated mean AGB), the CA required a 27.1% lower sample size for small plots of 100 m2 and a 10.4% lower sample size for larger plots of 1700 m2. We examined sampling induced errors only and did not yet consider model errors. We discuss practical issues in implementing the CA in field inventories and the potential in applications that model biomass with remote sensing data. The CA is a variation on a plot design for above-ground forest biomass; as such it can be applied in combination with any forest inventory sampling design. Numéro de notice : A2020-812 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00268-7 Date de publication en ligne : 23/10/2020 En ligne : https://doi.org/10.1186/s40663-020-00268-7 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96985
in Forest ecosystems > vol 7 (2020) . - n° 57[article]A century of National Forest Inventory in Norway – informing past, present, and future decisions / Johannes Breidenbach in Forest ecosystems, vol 7 (2020)
[article]
Titre : A century of National Forest Inventory in Norway – informing past, present, and future decisions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; Aksel Granhus, Auteur ; Gro Hylen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] diamètre des arbres
[Termes IGN] Norvège
[Termes IGN] Pinophyta
[Termes IGN] ressources forestières
[Termes IGN] santé des forêts
[Termes IGN] service écosystémique
[Termes IGN] télédétection
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Past: In the early twentieth century, forestry was one of the most important sectors in Norway and an agitated discussion about the perceived decline of forest resources due to over-exploitation was ongoing. To base the discussion on facts, the young state of Norway established Landsskogtakseringen – the world’s first National Forest Inventory (NFI). Field work started in 1919 and was carried out by county. Trees were recorded on 10 m wide strips with 1–5 km interspaces. Site quality and land cover categories were recorded along each strip. Results for the first county were published in 1920, and by 1930 most forests below the coniferous tree line were inventoried. The 2nd to 5th inventories followed in the years 1937–1986. As of 1954, temporary sample plot clusters on a 3 km × 3 km grid were used as sampling units. Present: The current NFI grid was implemented in the 6th NFI from 1986 to 1993, when permanent plots on a 3 km × 3 km grid were established below the coniferous tree line. As of the 7th inventory in 1994, the NFI is continuous, and 1/5 of the plots are measured annually. All trees with a diameter ≥ 5 cm are recorded on circular, 250 m2 plots. The NFI grid was expanded in 2005 to cover alpine regions with 3 km × 9 km and 9 km × 9 km grids. In 2012, the NFI grid within forest reserves was doubled along the cardinal directions. Clustered temporary plots are used periodically to facilitate county-level estimates. As of today, more than 120 variables are recorded in the NFI including bilberry cover, drainage status, deadwood, and forest health. Land-use changes are monitored and trees outside forests are recorded. Future: Considerable research efforts towards the integration of remote sensing technologies enable the publication of the Norwegian Forest Resource Map since 2015, which is also used for small area estimation at the municipality level. On the analysis side, capacity and software for long term growth and yield prognosis are being developed. Furthermore, we foresee the inclusion of further variables for monitoring ecosystem services, and an increasing demand for mapped information. The relatively simple NFI design has proven to be a robust choice for satisfying steadily increasing information needs and concurrently providing consistent time series. Numéro de notice : A2020-813 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00261-0 Date de publication en ligne : 17/07/2020 En ligne : https://doi.org/10.1186/s40663-020-00261-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96986
in Forest ecosystems > vol 7 (2020) . - n° 46[article]Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors / Svetlana Saarela in Forest ecosystems, vol 7 (2020)
[article]
Titre : Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors Type de document : Article/Communication Auteurs : Svetlana Saarela, Auteur ; André Wästlund, Auteur ; Emma Hölmstrom, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 43 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse aérienne
[Termes IGN] carte thématique
[Termes IGN] données allométriques
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur de modèle
[Termes IGN] inférence statistique
[Termes IGN] modèle d'incertitude
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] semis de points
[Termes IGN] SuèdeRésumé : (auteur) Background: The increasing availability of remotely sensed data has recently challenged the traditional way of performing forest inventories, and induced an interest in model-based inference. Like traditional design-based inference, model-based inference allows for regional estimates of totals and means, but in addition for wall-to-wall mapping of forest characteristics. Recently Light Detection and Ranging (LiDAR)-based maps of forest attributes have been developed in many countries and been well received by users due to their accurate spatial representation of forest resources. However, the correspondence between such mapping and model-based inference is seldom appreciated. In this study, we applied hierarchical model-based inference to produce aboveground biomass maps as well as maps of the corresponding prediction uncertainties with the same spatial resolution. Further, an estimator of mean biomass at regional level, and its uncertainty, was developed to demonstrate how mapping and regional level assessment can be combined within the framework of model-based inference.
Results: Through a new version of hierarchical model-based estimation, allowing models to be nonlinear, we accounted for uncertainties in both the individual tree-level biomass models and the models linking plot level biomass predictions with LiDAR metrics. In a 5005 km2 large study area in south-central Sweden the predicted aboveground biomass at the level of 18 m ×18 m map units was found to range between 9 and 447 Mg ·ha−1. The corresponding root mean square errors ranged between 10 and 162 Mg ·ha−1. For the entire study region, the mean aboveground biomass was 55 Mg ·ha−1 and the corresponding relative root mean square error 8%. At this level 75% of the mean square error was due to the uncertainty associated with tree-level models.
Conclusions: Through the proposed method it is possible to link mapping and estimation within the framework of model-based inference. Uncertainties in both tree-level biomass models and models linking plot level biomass with LiDAR data are accounted for, both for the uncertainty maps and the overall estimates. The development of hierarchical model-based inference to handle nonlinear models was an important prerequisite for the study.Numéro de notice : A2020-814 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00245-0 Date de publication en ligne : 03/07/2020 En ligne : https://doi.org/10.1186/s40663-020-00245-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96987
in Forest ecosystems > vol 7 (2020) . - n° 43[article]Analysing the quality of Swiss National Forest Inventory measurements of woody species richness / Berthold Traub in Forest ecosystems, vol 7 (2020)
[article]
Titre : Analysing the quality of Swiss National Forest Inventory measurements of woody species richness Type de document : Article/Communication Auteurs : Berthold Traub, Auteur ; Rafaël O. Wüest, Auteur Année de publication : 2020 Article en page(s) : n° 37 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse diachronique
[Termes IGN] échantillonnage
[Termes IGN] écosystème forestier
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] qualité des données
[Termes IGN] Suisse
[Termes IGN] surveillance forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Background: Under ongoing climate and land-use change, biodiversity is continuously decreasing and monitoring biodiversity is becoming increasingly important. National Forest Inventory (NFI) programmes provide valuable time-series data on biodiversity and thus contribute to assessments of the state and trends in biodiversity, as well as ecosystem functioning. Data quality in this context is of paramount relevance, particularly for ensuring a meaningful interpretation of changes. The Swiss NFI revisits about 8%–10% of its sample plots regularly in repeat surveys to supervise the quality of fieldwork.
Methods: We analysed the relevance of observer bias with equivalence tests, examined data quality objectives defined by the Swiss NFI instructors, and calculated the pseudo-turnover (PT) of species composition, that is, the percentage of species not observed by both teams. Three attributes of woody species richness from the latest Swiss NFI cycles (3 and 4) were analysed: occurrence of small tree and shrub species (1) on the sample plot and (2) at the forest edge, and (3) main shrub and trees species in the upper storey.
Results: We found equivalent results between regular and repeat surveys for all attributes. Data quality, however, was significantly below expectations in all cases, that is, as much as 20%–30% below the expected data quality limit of 70%–80% (proportion of observations that should not deviate from a predefined threshold). PT values were about 10%–20%, and the PT of two out of three attributes decreased significantly in NFI4. This type of uncertainty – typically caused by a mixture of overlooking and misidentifying species – should be considered carefully when interpreting change figures on species richness estimates from NFI data.
Conclusions: Our results provide important information on the data quality achieved in Swiss NFIs in terms of the reproducibility of the collected data. The three applied approaches proved to be effective for evaluating the quality of plot-level species richness and composition data in forest inventories and other biodiversity monitoring programmes. As such, they could also be recommended for assessing the quality of biodiversity indices derived from monitoring data.Numéro de notice : A2020-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00252-1 Date de publication en ligne : 17/06/2020 En ligne : https://doi.org/10.1186/s40663-020-00252-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96988
in Forest ecosystems > vol 7 (2020) . - n° 37[article]