Sensors . vol 21 n° 1Paru le : 01/01/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors / Emilio Guirado in Sensors, vol 21 n° 1 (January 2021)
[article]
Titre : Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors Type de document : Article/Communication Auteurs : Emilio Guirado, Auteur ; Javier Blanco-Sacristán, Auteur ; Emilio Rodríguez-Caballero, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 320 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] arbuste
[Termes IGN] capteur optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation d'image
[Termes IGN] service écosystémique
[Termes IGN] surveillance de la végétation
[Termes IGN] zone arideRésumé : (auteur) Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands. Numéro de notice : A2021-157 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21010320 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/s21010320 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97072
in Sensors > vol 21 n° 1 (January 2021) . - n° 320[article]Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network / Mengdi Li in Sensors, vol 21 n° 1 (January 2021)
[article]
Titre : Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network Type de document : Article/Communication Auteurs : Mengdi Li, Auteur ; Anumoi Mathai, Auteur ; Stephen L. H. Lau, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 313 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection d'objet
[Termes IGN] fond marin
[Termes IGN] rapport signal sur bruit
[Termes IGN] reconstruction d'image
[Termes IGN] reconstruction d'objetRésumé : (auteur) Due to medium scattering, absorption, and complex light interactions, capturing objects from the underwater environment has always been a difficult task. Single-pixel imaging (SPI) is an efficient imaging approach that can obtain spatial object information under low-light conditions. In this paper, we propose a single-pixel object inspection system for the underwater environment based on compressive sensing super-resolution convolutional neural network (CS-SRCNN). With the CS-SRCNN algorithm, image reconstruction can be achieved with 30% of the total pixels in the image. We also investigate the impact of compression ratios on underwater object SPI reconstruction performance. In addition, we analyzed the effect of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to determine the image quality of the reconstructed image. Our work is compared to the SPI system and SRCNN method to demonstrate its efficiency in capturing object results from an underwater environment. The PSNR and SSIM of the proposed method have increased to 35.44% and 73.07%, respectively. This work provides new insight into SPI applications and creates a better alternative for underwater optical object imaging to achieve good quality. Numéro de notice : A2021-158 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21010313 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/s21010313 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97073
in Sensors > vol 21 n° 1 (January 2021) . - n° 313[article]