Sensors . vol 21 n° 3Paru le : 01/02/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
[article]
Titre : Activity recognition in residential spaces with Internet of things devices and thermal imaging Type de document : Article/Communication Auteurs : Kshirasagar Naik, Auteur ; Tejas Pandit, Auteur ; Nitin Naik, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] compréhension de l'image
[Termes IGN] contrôle par télédétection
[Termes IGN] détection d'événement
[Termes IGN] espace intérieur
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] intelligence artificielle
[Termes IGN] internet des objets
[Termes IGN] itération
[Termes IGN] modèle stéréoscopique
[Termes IGN] objet mobile
[Termes IGN] reconnaissance automatique
[Termes IGN] reconnaissance d'objets
[Termes IGN] scène 3DRésumé : (auteur) In this paper, we design algorithms for indoor activity recognition and 3D thermal model generation using thermal images, RGB images, captured from external sensors, and the internet of things setup. Indoor activity recognition deals with two sub-problems: Human activity and household activity recognition. Household activity recognition includes the recognition of electrical appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal model compared to the 2D thermal image. Results from this research can find applications in home automation, heat automation in smart homes, and energy management in residential spaces. Numéro de notice : A2021-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21030988 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21030988 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97075
in Sensors > vol 21 n° 3 (February 2021) . - n° 988[article]Semi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
[article]
Titre : Semi-supervised joint learning for hand gesture recognition from a single color image Type de document : Article/Communication Auteurs : Chi Xu, Auteur ; Yunkai Jiang, Auteur ; Jun Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1007 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] détection d'objet
[Termes IGN] estimation de pose
[Termes IGN] image en couleur
[Termes IGN] jeu de données
[Termes IGN] reconnaissance de gestesRésumé : (auteur) Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task. Numéro de notice : A2021-160 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21031007 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21031007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97076
in Sensors > vol 21 n° 3 (February 2021) . - n° 1007[article]