Transactions in GIS . Vol 25 n° 1Paru le : 01/02/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierWeb‐based real‐time visualization of large‐scale weather radar data using 3D tiles / Mingyue Lu in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Web‐based real‐time visualization of large‐scale weather radar data using 3D tiles Type de document : Article/Communication Auteurs : Mingyue Lu, Auteur ; Xinhao Wang, Auteur ; Xintao Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 25 - 43 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Chine
[Termes IGN] dalle
[Termes IGN] données météorologiques
[Termes IGN] données radar
[Termes IGN] géomatique web
[Termes IGN] grande échelle
[Termes IGN] temps réel
[Termes IGN] visualisation 3D
[Termes IGN] web des données
[Termes IGN] WebSIG
[Vedettes matières IGN] GéovisualisationRésumé : (Auteur) Weather radar data play an important role in meteorological analysis and forecasting. In particular, web‐based real‐time 3D visualization will enable and enhance various meteorological applications by avoiding the dissemination of a large amount of data over the internet. Despite that, most existing studies are either limited to 2D or small‐scale data analytics due to methodological limitations. This article proposes a new framework to enable web‐based real‐time 3D visualization of large‐scale weather radar data using 3D tiles and WebGIS technology. The 3D tiles technology is an open specification for online streaming massive heterogeneous 3D geospatial datasets, which is designed to improve rendering performance and reduce memory consumption. First, the weather radar data from multiple single‐radar sites across a large coverage area are organized into a spliced grid data (i.e., weather radar composing data, WRCD). Next, the WRCD is converted into a widely used 3D tile data structure in four steps: data preprocessing, data indexing, data transformation, and 3D tile generation. Last, to validate the feasibility of the proposed strategy, a prototype, namely Meteo3D at https://202.195.237.252:82, is implemented to accommodate the WRCD collected from all the weather radar sites over the whole of China. The results show that near real‐time and accurate visualization for the monitoring and early warning of strong convective weather can be achieved. Numéro de notice : A2021-185 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12638 Date de publication en ligne : 19/05/2020 En ligne : https://doi.org/10.1111/tgis.12638 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97147
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 25 - 43[article]Room semantics inference using random forest and relational graph convolutional networks: A case study of research building / Xuke Hu in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Room semantics inference using random forest and relational graph convolutional networks: A case study of research building Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hongchao Fan, Auteur ; Alexey Noskov, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 71 - 111 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment public
[Termes IGN] carte d'intérieur
[Termes IGN] cartographie automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] graphe relationnel
[Termes IGN] inférence sémantiqueRésumé : (Auteur) Semantically rich maps are the foundation of indoor location‐based services. Many map providers such as OpenStreetMap and automatic mapping solutions focus on the representation and detection of geometric information (e.g., shape of room) and a few semantics (e.g., stairs and furniture) but neglect room usage. To mitigate the issue, this work proposes a general room tagging method for public buildings, which can benefit both existing map providers and automatic mapping solutions by inferring the missing room usage based on indoor geometric maps. Two kinds of statistical learning‐based room tagging methods are adopted: traditional machine learning (e.g., random forests) and deep learning, specifically relational graph convolutional networks (R‐GCNs), based on the geometric properties (e.g., area), topological relationships (e.g., adjacency and inclusion), and spatial distribution characteristics of rooms. In the machine learning‐based approach, a bidirectional beam search strategy is proposed to deal with the issue that the tag of a room depends on the tag of its neighbors in an undirected room sequence. In the R‐GCN‐based approach, useful properties of neighboring nodes (rooms) in the graph are automatically gathered to classify the nodes. Research buildings are taken as examples to evaluate the proposed approaches based on 130 floor plans with 3,330 rooms by using fivefold cross‐validation. The experiments conducted show that the random forest‐based approach achieves a higher tagging accuracy (0.85) than R‐GCN (0.79). Numéro de notice : A2021-186 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12664 Date de publication en ligne : 19/08/2020 En ligne : https://doi.org/10.1111/tgis.12664 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97152
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 71 - 111[article]Automatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Automatic filtering and 2D modeling of airborne laser scanning building point cloud Type de document : Article/Communication Auteurs : Fayez Tarsha-Kurdi, Auteur ; Mohammad Awrangjeb, Auteur ; Nosheen Munir, Auteur Année de publication : 2021 Article en page(s) : pp 164 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de filtrage
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] modélisation 2D
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (Auteur) This article suggests a new approach to automatic building footprint modeling using exclusively airborne LiDAR data. The first part of the suggested approach is the filtering of the building point cloud using the bias of the Z‐coordinate histogram. This operation aims to detect the points of roof class from the building point cloud. Hence, eight rules for histogram interpretation are suggested. The second part of the suggested approach is the roof modeling algorithm. It starts by detecting the roof planes and calculating their adjacency matrix. Hence, the roof plane boundaries are classified into four categories: (1) outer boundary; (2) inner plane boundaries; (3) roof detail boundaries; and (4) boundaries related to the missing planes. Finally, the junction relationships of roof plane boundaries are analyzed for detecting the roof vertices. With regard to the resulting accuracy quantification, the average values of the correctness and the completeness indices are employed in both approaches. In the filtering algorithm, their values are respectively equal to 97.5 and 98.6%, whereas they are equal to 94.0 and 94.0% in the modeling approach. These results reflect the high efficacy of the suggested approach. Numéro de notice : A2021-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12685 Date de publication en ligne : 11/09/2020 En ligne : https://doi.org/10.1111/tgis.12685 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97154
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 164 - 188[article]Improving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Improving trajectory estimation using 3D city models and kinematic point clouds Type de document : Article/Communication Auteurs : Lucas Lucks, Auteur ; Lasse Klingbeil, Auteur ; Lutz Plümer, Auteur ; Youness Dehbi, Auteur Année de publication : 2021 Article en page(s) : pp 238 - 260 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] algorithme ICP
[Termes IGN] bruit (théorie du signal)
[Termes IGN] centrale inertielle
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] interpolation
[Termes IGN] milieu urbain
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle sémantique de données
[Termes IGN] navigation autonome
[Termes IGN] semis de pointsRésumé : (Auteur) Accurate and robust positioning of vehicles in urban environments is of high importance for autonomous driving or mobile mapping. In mobile mapping systems, a simultaneous mapping of the environment using laser scanning and an accurate positioning using global navigation satellite systems are targeted. This requirement is often not guaranteed in shadowed cities where global navigation satellite system signals are usually disturbed, weak or even unavailable. We propose a novel approach which incorporates prior knowledge (i.e., a 3D city model of the environment) and improves the trajectory. The recorded point cloud is matched with the semantic city model using a point‐to‐plane iterative closest point method. A pre‐classification step enables an informed sampling of appropriate matching points. Random forest is used as classifier to discriminate between facade and remaining points. Local inconsistencies are tackled by a segmentwise partitioning of the point cloud where an interpolation guarantees a seamless transition between the segments. The general applicability of the method implemented is demonstrated on an inner‐city data set recorded with a mobile mapping system. Numéro de notice : A2021-188 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12719 Date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1111/tgis.12719 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97157
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 238 - 260[article]A points of interest matching method using a multivariate weighting function with gradient descent optimization / Zhou Yang in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : A points of interest matching method using a multivariate weighting function with gradient descent optimization Type de document : Article/Communication Auteurs : Zhou Yang, Auteur ; Mingjun Wang, Auteur ; Chen Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 359 - 381 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] algorithme du gradient
[Termes IGN] appariement automatique
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage automatique
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] exploration de données
[Termes IGN] intégration de données
[Termes IGN] point d'intérêt
[Termes IGN] pondération
[Termes IGN] qualité des donnéesRésumé : (Auteur) Volunteered geographic information contains abundant valuable data, which can be applied to various spatiotemporal geographical analyses. While the useful information may be distributed in different, low‐quality data sources, this issue can be solved by data integration. Generally, the primary task of integration is data matching. Unfortunately, due to the complexity and irregularities of multi‐source data, existing studies have found it difficult to efficiently establish the correspondence between different sources. Therefore, we present a multi‐stage method to match multi‐source data using points of interest. A spatial filter is constructed to obtain candidate sets for geographical entities. The weights of non‐spatial characteristics are examined by a machine learning‐related algorithm with artificially labeled random samples. A case study on Fuzhou reveals that an average of 95% of instances are accurately matched. Thus, our study provides a novel solution for researchers who are engaged in data mining and related work to accurately match multi‐source data via knowledge obtained by the idea and methods of machine learning. Numéro de notice : A2021-189 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12690 Date de publication en ligne : 05/10/2020 En ligne : https://doi.org/10.1111/tgis.12690 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97158
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 359 - 381[article]Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm / Mehrdad Bijandi in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm Type de document : Article/Communication Auteurs : Mehrdad Bijandi, Auteur ; Mohammad Karimi, Auteur ; Bahman Farhadi Bansouleh, Auteur ; Wim van der Knaap, Auteur Année de publication : 2021 Article en page(s) : pp 551 - 574 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données topographiques
[Termes IGN] irrigation
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] parcelle agricole
[Termes IGN] planification
[Termes IGN] remembrement agricole
[Termes IGN] surface cultivée
[Termes IGN] utilisation du solRésumé : (Auteur) In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio. Numéro de notice : A2021-210 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12702 Date de publication en ligne : 27/10/2020 En ligne : https://doi.org/10.1111/tgis.12702 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97159
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 551 - 574[article]