IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . Vol 59 n° 3Paru le : 01/03/2021 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery Type de document : Article/Communication Auteurs : Ju Zhang, Auteur ; Qingwu Hu, Auteur ; Jiayuan Li, Auteur ; Mingyao Ai, Auteur Année de publication : 2021 Article en page(s) : pp 1836 - 1847 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] rastérisation
[Termes IGN] segmentation d'image
[Termes IGN] trace GPS
[Termes IGN] trace numérique
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) Deep learning has achieved great success in recent years, among which the convolutional neural network (CNN) method is outstanding in image segmentation and image recognition. It is also widely used in satellite imagery road extraction and, generally, can obtain accurate and extraction results. However, at present, the extraction of roads based on CNN still requires a lot of manual preparation work, and a large number of samples can be marked to achieve extraction, which has to take long drawing cycle and high production cost. In this article, a new CNN sample set production method is proposed, which uses the GPS trajectories of floating car as training set (GPSTasST), for the multilevel urban roads extraction from high-resolution remote sensing imagery. This method rasterizes the GPS trajectories of floating car into a raster map and uses the processed raster map to label the satellite image to obtain a road extraction sample set. CNN can extract roads from remote sensing imagery by learning the training set. The results show that the method achieves a harmonic mean of precision and recall higher than road extraction method from single data source while eliminating the manual labeling work, which shows the effectiveness of this work. Numéro de notice : A2021-211 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003425 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97196
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 1836 - 1847[article]Radar measurements of snow depth over sea ice on an unmanned aerial vehicle / Adrian Eng-Choon Tan in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Radar measurements of snow depth over sea ice on an unmanned aerial vehicle Type de document : Article/Communication Auteurs : Adrian Eng-Choon Tan, Auteur ; Josh McCulloch, Auteur ; Wolfgang Rack, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1868 - 1875 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Austral (océan)
[Termes IGN] épaisseur
[Termes IGN] glace de mer
[Termes IGN] image captée par drone
[Termes IGN] image radar
[Termes IGN] manteau neigeux
[Termes IGN] précision centimétrique
[Termes IGN] rapport signal sur bruit
[Termes IGN] variation saisonnièreRésumé : (Auteur) We propose a lightweight radar that autonomously measures snow depth over sea ice from an unmanned aerial vehicle (UAV). Development of this snow radar and its integration with an octocopter UAV is presented. Field trials of the UAV-mounted snow radar, conducted in Antarctica during the summer season of 2017/2018, are also described. The radar allows measurements of snow depths on sea ice between 10 and 100 cm. Additional reflections due to internal layers within the snow are evident at a few measurement points. The snow radar is evaluated for various flight parameters: stationary; flying at speeds between 1 and 3 m/s, and at heights from 5 to 15 m. Evaluation of snow-depth results indicates that a depth accuracy of ±3.2 cm is achieved with stationary measurements, and of ±9.1 cm with measurements at the various flight speeds. Numéro de notice : A2021-212 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3006182 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3006182 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97197
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 1868 - 1875[article]On the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns / Igor R. Ivić in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : On the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns Type de document : Article/Communication Auteurs : Igor R. Ivić, Auteur Année de publication : 2021 Article en page(s) : pp 2015 - 2027 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] antenne radar
[Termes IGN] coefficient de corrélation
[Termes IGN] données météorologiques
[Termes IGN] données polarimétriques
[Termes IGN] écho radar
[Termes IGN] faisceau
[Termes IGN] mesurage de phase
[Termes IGN] oscillateur
[Termes IGN] polarimétrie radar
[Termes IGN] variance de phaseRésumé : (Auteur) Many modern phased-array radars (PARs) are multichannel systems that include multiple receivers for data acquisition. Each channel provides a signal from a group of Transmit/Receive modules comprising a section of the antenna. Channels typically consist of a full receive path, often with an independent local oscillator (LO) clock source. Such arrangement provides for beamforming flexibility on receive which can be applied in a digital domain. Consequently, the channel-to-channel phase and magnitude alignment is critical to maximizing the performance of the digital beamforming process and the accuracy of resulting detections and measurements. Herein, a novel method to improve such alignment using weather returns and achieve the improvement in the polarimetric variable estimates is described. Numéro de notice : A2021-213 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003293 Date de publication en ligne : 10/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003293 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97201
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2015 - 2027[article]Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice / Yan Sun in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice Type de document : Article/Communication Auteurs : Yan Sun, Auteur ; Xiao-Ming Li, Auteur Année de publication : 2021 Article en page(s) : pp 2116 - 2131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Austral (océan)
[Termes IGN] bruit thermique
[Termes IGN] étalonnage radiométrique
[Termes IGN] filtrage du bruit
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TOPSAR
[Termes IGN] polarisation croisée
[Termes IGN] rapport signal sur bruitRésumé : (Auteur) Sentinel-1 (S1) extra-wide (EW) swath data in cross-polarization (horizontal–vertical, HV or vertical–horizontal, VH) are strongly affected by the scalloping effect and thermal noise, particularly over areas with weak backscattered signals, such as sea surfaces. Although noise vectors in both the azimuth and range directions are provided in the standard S1 EW data for subtraction, the residual thermal noise still significantly affects sea ice detection by the EW data. In this article, we improve the denoising method developed in previous studies to remove the additive noise for the S1 EW data in cross-polarization. Furthermore, we propose a new method for eliminating the residual noise (i.e., multiplicative noise) at the subswath boundaries of the EW data, which cannot be well processed by simply subtracting the reconstructed 2-D noise field. The proposed method of removing both the additive and multiplicative noise was applied to EW HV-polarized images processed using different Instrument Processing Facility (IPF) versions. The results suggest that the proposed algorithm significantly improves the quality of EW HV-polarized images under various sea ice conditions and sea states in the marginal ice zone (MIZ) of the Arctic. This is of great support for the utilization of cross-polarization synthetic aperture radar (SAR) images in wide swaths for intensive sea ice monitoring in polar regions. Numéro de notice : A2021-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005831 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005831 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97202
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2116 - 2131[article]Cluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Cluster-based empirical tropospheric corrections applied to InSAR time series analysis Type de document : Article/Communication Auteurs : Kyle Dennis Murray, Auteur ; Rowena B. Lohman, Auteur ; David P. S. Bekaert, Auteur Année de publication : 2021 Article en page(s) : pp 2204 - 2212 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bruit atmosphérique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] déformation de la croute terrestre
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mexique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelleRésumé : (Auteur) Interferometric synthetic aperture radar (InSAR) allows for mapping of crustal deformation on land with high spatial resolution and precision in areas with high signal-to-noise ratios. Efforts to obtain precise displacement time series globally, however, are severely limited by radar path delays within the troposphere. The tropospheric delay is integrated along the full path length between the ground and the satellite, resulting in correlations between the interferometric phase and elevation that can vary dramatically in both space and time. We evaluate the performance of spatially variable, empirical removal of phase-elevation dependence within SAR interferograms through the use of the K -means clustering algorithm. We apply this method to both synthetic test data, as well as to C-band Sentinel-1a/b time series acquired over a large area in south-central Mexico along the Pacific coast and inland—an area with a large elevation gradient that is of particular interest to researchers studying tectonic- and anthropogenic-related deformation. We show that the clustering algorithm is able to identify cases where tropospheric properties vary across topographic divides, reducing total root mean square (rms) by an average of 50%, as opposed to a spatially constant phase-elevation correction, which has insignificant error reduction. Our approach also reduces tropospheric noise while preserving test signals in synthetic examples. Finally, we show the average standard deviation of the residuals from the best-fit linear rate decreases from approximately 3 to 1.5 cm, which corresponds to a change in the error on the best-fit linear rate from 0.94 to 0.63 cm/yr. Numéro de notice : A2021-215 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003271 Date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003271 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97204
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2204 - 2212[article]Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Pan-sharpening via multiscale dynamic convolutional neural network Type de document : Article/Communication Auteurs : Jianwen Hu, Auteur ; Pei Hu, Auteur ; Xudong Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2231 - 2244 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données multiéchelles
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconstruction d'imageRésumé : (Auteur) Pan-sharpening is an effective method to obtain high-resolution multispectral images by fusing panchromatic (PAN) images with fine spatial structure and low-resolution multispectral images with rich spectral information. In this article, a multiscale pan-sharpening method based on dynamic convolutional neural network is proposed. The filters in dynamic convolution are generated dynamically and locally by the filter generation network which is different from the standard convolution and strengthens the adaptivity of the network. The dynamic filters are adaptively changed according to the input images. The proposed multiscale dynamic convolutions extract detail feature of PAN image at different scales. Multiscale network structure is beneficial to obtain effective detail features. The weights obtained by the weight generation network are used to adjust the relationship among the detail features in each scale. The GeoEye-1, QuickBird, and WorldView-3 data are used to evaluate the performance of the proposed method. Compared with the widely used state-of-the-art pan-sharpening approaches, the experimental results demonstrate the superiority of the proposed method in terms of both objective quality indexes and visual performance. Numéro de notice : A2021-216 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007884 Date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007884 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97206
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2231 - 2244[article]Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction / Xiaorui Song in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction Type de document : Article/Communication Auteurs : Xiaorui Song, Auteur ; Ling Zou, Auteur ; Lingda Wu, Auteur Année de publication : 2021 Article en page(s) : pp 2365 - 2377 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection de cible
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image à basse résolution
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robuste
[Termes IGN] précision infrapixellaireRésumé : (Auteur) The low spatial resolution associated with imaging spectrometers has caused subpixel target detection to become a special problem in hyperspectral image (HSI) processing that poses considerable challenges. In subpixel target detection, the size of the target is smaller than that of a pixel, making the spatial information of the target almost useless so that a detection algorithm must rely on the spectral information of the image. To address this problem, this article proposes a subpixel target detection algorithm for hyperspectral remote sensing imagery based on background endmember extraction. First, we propose a background endmember extraction algorithm based on robust nonnegative dictionary learning to obtain the background endmember spectrum of the image. Next, we construct a hyperspectral subpixel target detector based on pixel reconstruction (HSPRD) to perform pixel-by-pixel target detection on the image to be tested using the background endmember spectral matrix and the spectra of known ground targets. Finally, the subpixel target detection results are obtained. The experimental results show that, compared with other existing subpixel target detection methods, the algorithm proposed here can provide the optimum target detection results for both synthetic and real-world data sets. Numéro de notice : A2021-217 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1109/TGRS.2020.3002461 Date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002461 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97209
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2365 - 2377[article]Passive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Passive radar imaging of ship targets with GNSS signals of opportunity Type de document : Article/Communication Auteurs : Debora Pastina, Auteur ; Fabrizio Santi, Auteur ; Federica Pieralice, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2627 - 2742 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] capteur passif
[Termes IGN] chaîne de traitement
[Termes IGN] détection de cible
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image radar
[Termes IGN] navigation maritime
[Termes IGN] navire
[Termes IGN] objet mobile
[Termes IGN] radar bistatique
[Termes IGN] signal GNSS
[Termes IGN] télédétection spatialeRésumé : (Auteur) This article explores the possibility to exploit global navigation satellite systems (GNSS) signals to obtain radar imagery of ships. This is a new application area for the GNSS remote sensing, which adds to a rich line of research about the alternative utilization of navigation satellites for remote sensing purposes, which currently includes reflectometry, passive radar, and synthetic aperture radar (SAR) systems. In the field of short-range maritime surveillance, GNSS-based passive radar has already proven to detect and localize ship targets of interest. The possibility to obtain meaningful radar images of observed vessels would represent an additional benefit, opening the doors to noncooperative ship classification capability with this technology. To this purpose, a proper processing chain is here conceived and developed, able to achieve well-focused images of ships while maximizing their signal-to-background ratio. Moreover, the scaling factors needed to map the backscatter energy in the range and cross-range domain are also analytically derived, enabling the estimation of the length of the target. The effectiveness of the proposed approach at obtaining radar images of ship targets and extracting relevant features is confirmed via an experimental campaign, comprising multiple Galileo satellites and a commercial ferry undergoing different kinds of motion. Numéro de notice : A2021-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005306 Date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005306 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97210
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2627 - 2742[article]Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions Type de document : Article/Communication Auteurs : Xin-Ming Zhu, Auteur ; Xiao-Ning Song, Auteur ; Pei Leng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2680 - 2697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-8
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] température au sol
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) Investigating the relations between land surface temperature (LST) and biophysical compositions can help the understanding of the surface biophysical process. However, there are still uncertainties in determining the impacts of biophysical compositions on LST due to the atmospheric effects. In this article, four atmospheric correction algorithms were used to correct 12 Landsat 8 images in Xi’an, Beijing, Wuhan, and Guangzhou, China, including the Atmospheric Correction for Flat Terrain (ATCOR2), Quick Atmospheric Correction (QUAC), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and Second Simulation of Satellite Signal in the Solar Spectrum (6S). Then, geodetector was used to investigate the atmospheric correction differences in the spatial heterogeneity relationships between LST and normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and bare soil index (BSI). Results indicate that the selected composition factors were greatly improved after atmospheric correction, and the relations between LST and three factors were characterized by obvious atmospheric correction differences in four study areas. On the whole, the 6S algorithm performed the best in improving the factor values and impacting the spatial heterogeneity relations between LST and biophysical compositions, followed by FLAASH, QUAC, and ATCOR2 algorithms. Except for Wuhan, 6S, FLAASH, and QUAC algorithms significantly enhanced the correlation between LST and NDVI. However, all algorithms weakened the correlations between LST, NDVI, and BSI, except Guangzhou. These findings have been verified using the regression analysis. In addition, with geodetector, combinations of any two composition factors all had strongly enhanced impacts on LST, and a combination between NDVI and NDBI performed the strongest in most cases. Numéro de notice : A2021-219 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002821 Date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002821 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97211
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2680 - 2697[article]