Remote sensing . vol 12 n° 23Paru le : 15/12/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierCNN-based tree species classification using high resolution RGB image data from automated UAV observations / Sebastian Egli in Remote sensing, vol 12 n° 23 (December-2 2020)
[article]
Titre : CNN-based tree species classification using high resolution RGB image data from automated UAV observations Type de document : Article/Communication Auteurs : Sebastian Egli, Auteur ; Martin Höpke, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre (flore)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'arbres
[Termes IGN] espèce végétale
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] phénologieRésumé : (auteur) Data on the distribution of tree species are often requested by forest managers, inventory agencies, foresters as well as private and municipal forest owners. However, the automated detection of tree species based on passive remote sensing data from aerial surveys is still not sufficiently developed to achieve reliable results independent of the phenological stage, time of day, season, tree vitality and prevailing atmospheric conditions. Here, we introduce a novel tree species classification approach based on high resolution RGB image data gathered during automated UAV flights that overcomes these insufficiencies. For the classification task, a computationally lightweight convolutional neural network (CNN) was designed. We show that with the chosen CNN model architecture, average classification accuracies of 92% can be reached independently of the illumination conditions and the phenological stages of four different tree species. We also show that a minimal ground sampling density of 1.6 cm/px is needed for the classification model to be able to make use of the spatial-structural information in the data. Finally, to demonstrate the applicability of the presented approach to derive spatially explicit tree species information, a gridded product is generated that yields an average classification accuracy of 88%. Numéro de notice : A2020-820 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12233892 Date de publication en ligne : 27/11/2020 En ligne : https://doi.org/10.3390/rs12233892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97239
in Remote sensing > vol 12 n° 23 (December-2 2020)[article]