ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 175Paru le : 01/05/2021 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021051 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021052 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
081-2021053 | DEP-RECP | Revue | Saint-Mandé | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierLearning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation / Yansheng Li in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation Type de document : Article/Communication Auteurs : Yansheng Li, Auteur ; Te Shi, Auteur ; Yongjun Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 20 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Due to its wide applications, remote sensing (RS) image semantic segmentation has attracted increasing research interest in recent years. Benefiting from its hierarchical abstract ability, the deep semantic segmentation network (DSSN) has achieved tremendous success on RS image semantic segmentation and has gradually become the mainstream technology. However, the superior performance of DSSN highly depends on two conditions: (I) massive quantities of labeled training data exist; (II) the testing data seriously resemble the training data. In actual RS applications, it is difficult to fully meet these conditions due to the RS sensor variation and the distinct landscape variation in different geographic locations. To make DSSN fit the actual RS scenario, this paper exploits the cross-domain RS image semantic segmentation task, which means that DSSN is trained on one labeled dataset (i.e., the source domain) but is tested on another varied dataset (i.e., the target domain). In this setting, the performance of DSSN is inevitably very limited due to the data shift between the source and target domains. To reduce the disadvantageous influence of data shift, this paper proposes a novel objective function with multiple weakly-supervised constraints to learn DSSN for cross-domain RS image semantic segmentation. Through carefully examining the characteristics of cross-domain RS image semantic segmentation, multiple weakly-supervised constraints include the weakly-supervised transfer invariant constraint (WTIC), weakly-supervised pseudo-label constraint (WPLC) and weakly-supervised rotation consistency constraint (WRCC). Specifically, DualGAN is recommended to conduct unsupervised style transfer between the source and target domains to carry out WTIC. To make full use of the merits of multiple constraints, this paper presents a dynamic optimization strategy that dynamically adjusts the constraint weights of the objective function during the training process. With full consideration of the characteristics of the cross-domain RS image semantic segmentation task, this paper gives two cross-domain RS image semantic segmentation settings: (I) variation in geographic location and (II) variation in both geographic location and imaging mode. Extensive experiments demonstrate that our proposed method remarkably outperforms the state-of-the-art methods under both of these settings. The collected datasets and evaluation benchmarks have been made publicly available online (https://github.com/te-shi/MUCSS). Numéro de notice : A2021-261 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.009 Date de publication en ligne : 06/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97302
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 20 - 33[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Refinement of interferometric SAR parameters using digital terrain model as an external reference / Jyunpei Uemoto in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Refinement of interferometric SAR parameters using digital terrain model as an external reference Type de document : Article/Communication Auteurs : Jyunpei Uemoto, Auteur Année de publication : 2021 Article en page(s) : pp 34 - 43 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] ajustement de paramètres
[Termes IGN] empreinte
[Termes IGN] hauteur (coordonnée)
[Termes IGN] hauteur des arbres
[Termes IGN] hauteur du bâti
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] point d'appui
[Termes IGN] radar aéroporté à visée latéraleRésumé : (auteur) Numéro de notice : A2021-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.017 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97309
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 34 - 43[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de partie cachée
[Termes IGN] espace urbain
[Termes IGN] image aérienne oblique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction de route
[Termes IGN] réseau routier
[Termes IGN] texture d'image
[Termes IGN] véhicule automobileRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method / Hongliang Lu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method Type de document : Article/Communication Auteurs : Hongliang Lu, Auteur ; Heng Zhang, Auteur ; Huaitao Fan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 99 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande P
[Termes IGN] Chine
[Termes IGN] compensation
[Termes IGN] erreur de mesure
[Termes IGN] erreur de phase
[Termes IGN] Guyane (département français)
[Termes IGN] hauteur des arbres
[Termes IGN] image radar moirée
[Termes IGN] ligne de base
[Termes IGN] polarisation
[Termes IGN] tomographie radar
[Termes IGN] triangulation de DelaunayRésumé : (auteur) Synthetic aperture radar (SAR) tomography (TomoSAR) has been well-established for three-dimensional (3-D) information extraction of forests using the multi-baseline SAR data stacks. The multi-baseline SAR data stacks can be acquired by spaceborne and airborne SAR systems, but for forest scenarios, the data stacks acquired by the airborne SAR system are mostly used. Such a data stack has the advantages of short revisiting time and weak temporal decorrelation. However, due to the baseline errors (caused by the residual platform motion and the measurement errors of the navigation instruments), phase errors (PEs) will occur. PEs are independent of one track to the other, resulting in spreading and defocusing in tomographic imaging. In this paper, we proposed a novel phase compensation method named NC-PGA, which combines the methods of network construction (NC) and phase gradient autofocus (PGA) to estimate and compensate the PEs. The NC method uses the Delaunay triangulation network and beamforming to obtain an accurate elevation estimate of the selected permanent scatterers, which can be used as the prior information for subsequent processing to overcome the shortcomings of the PGA method in PEs estimation. The PGA method uses the spatial invariance of PEs in a limited area to compensate for the PE of each track. The applicability of the NC-PGA method is demonstrated using simulated data and real data. The real data contains two data stacks. The one is acquired by a full-polarization P-band airborne SAR system (developed independently by our project research team) over the study area in Saihanba Forest Farm in Hebei, China. The other one is acquired by ONERA SETHI airborne system over Paracou, French Guiana, in the frame of the European Space Agency’s campaign TropiSAR. We select a test area in the study area and successfully retrieve the height of the forest, and use LiDAR data for results validation and evaluation. Numéro de notice : A2021-271 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.022 Date de publication en ligne : 14/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97329
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 99 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Learning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Learning from multimodal and multitemporal earth observation data for building damage mapping Type de document : Article/Communication Auteurs : Bruno Adriano, Auteur ; Naoto Yokoya, Auteur ; Junshi Xia, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 132 - 143 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] catastrophe naturelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cyclone
[Termes IGN] dommage
[Termes IGN] données multitemporelles
[Termes IGN] image à haute résolution
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] observation de la Terre
[Termes IGN] segmentation sémantique
[Termes IGN] séisme
[Termes IGN] surveillance d'ouvrage
[Termes IGN] tsunamiRésumé : (auteur) Earth observation (EO) technologies, such as optical imaging and synthetic aperture radar (SAR), provide excellent means to continuously monitor ever-growing urban environments. Notably, in the case of large-scale disasters (e.g., tsunamis and earthquakes), in which a response is highly time-critical, images from both data modalities can complement each other to accurately convey the full damage condition in the disaster aftermath. However, due to several factors, such as weather and satellite coverage, which data modality will be the first available for rapid disaster response efforts is often uncertain. Hence, novel methodologies that can utilize all accessible EO datasets are essential for disaster management. In this study, we developed a global multimodal and multitemporal dataset for building damage mapping. We included building damage characteristics from three disaster types, namely, earthquakes, tsunamis, and typhoons, and considered three building damage categories. The global dataset contains high-resolution (HR) optical imagery and high-to-moderate-resolution SAR data acquired before and after each disaster. Using this comprehensive dataset, we analyzed five data modality scenarios for damage mapping: single-mode (optical and SAR datasets), cross-modal (pre-disaster optical and post-disaster SAR datasets), and mode fusion scenarios. We defined a damage mapping framework for semantic segmentation of damaged buildings based on a deep convolutional neural network (CNN) algorithm. We also compared our approach to another state-of-the-art model for damage mapping. The results indicated that our dataset, together with a deep learning network, enabled acceptable predictions for all the data modality scenarios. We also found that the results from cross-modal mapping were comparable to the results obtained from a fusion sensor and optical mode analysis. Numéro de notice : A2021-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.016 Date de publication en ligne : 17/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97343
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 132 - 143[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt