Paru le : 01/04/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
[article]
Titre : A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media Type de document : Article/Communication Auteurs : Yi Bao, Auteur ; Zhou Huang, Auteur ; Linna Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 639 - 660 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données spatiotemporelles
[Termes IGN] géopositionnement
[Termes IGN] graphe
[Termes IGN] modèle de simulation
[Termes IGN] point d'intérêt
[Termes IGN] réseau social
[Termes IGN] service fondé sur la position
[Termes IGN] utilisateur
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Location prediction based on spatio-temporal footprints in social media is instrumental to various applications, such as travel behavior studies, crowd detection, traffic control, and location-based service recommendation. In this study, we propose a model that uses geotags of social media to predict the potential area containing users’ next locations. In the model, we utilize HiSpatialCluster algorithm to identify clustering areas (CAs) from check-in points. CA is the basic spatial unit for predicting the potential area containing users’ next locations. Then, we use the LINE (Large-scale Information Network Embedding) to obtain the representation vector of each CA. Finally, we apply BiLSTM-CNN (Bidirectional Long Short-Term Memory-Convolutional Neural Network) for location prediction. The results show that the proposed ensemble model outperforms the single LSTM or CNN model. In the case study that identifies 100 CAs out of Weibo check-ins collected in Wuhan, China, the Top-5 predicted areas containing next locations amount to an 80% accuracy. The high accuracy is of great value for recommendation and prediction on areal unit. Numéro de notice : A2021-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808896 Date de publication en ligne : 26/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808896 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97324
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 639 - 660[article]A trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks / Bozhao Li in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
[article]
Titre : A trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks Type de document : Article/Communication Auteurs : Bozhao Li, Auteur ; Zhongliang Cai, Auteur ; Mengjun Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 717 - 740 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] appariement de cartes
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taux d'échantillonnage
[Termes IGN] trafic routier
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] zone urbaineRésumé : (auteur) Low-sampling-rate floating car data (FCD) are more challenging than those with high-sampling-rate FCD for map matching (MM) algorithms. Some MM algorithms for low-sampling-rate FCD lack sufficient efficiency nor accuracy, especially related to complex urban road networks. This paper proposes a new method named the trajectory restoration algorithm, which is based on geometry MM algorithms to ensure efficiency and accuracy. The proposed algorithm adopts the modified A* shortest path algorithm to reduce the number of function calls and fully considers road network topology and historical matched points to improve its accuracy. We test the efficiency and accuracy of the trajectory restoration algorithm with FCD data for the complex urban road networks in Beijing. The results have strong continuity which greatly improves the utilization of FCD. We show that the proposed algorithm outperforms related MM methods in efficiency and accuracy and its robustness to restore trajectories of both high and low sampling rates in complex urban road networks. Numéro de notice : A2021-269 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2020.1825721 Date de publication en ligne : 20/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1825721 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97326
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 717 - 740[article]Stop-and-move sequence expressions over semantic trajectories / Yenier Torres Izquierdo in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
[article]
Titre : Stop-and-move sequence expressions over semantic trajectories Type de document : Article/Communication Auteurs : Yenier Torres Izquierdo, Auteur ; Grettel Monteagudo Garcia, Auteur ; Marco A. Casanova, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 793 - 818 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] exploration de données
[Termes IGN] image Flickr
[Termes IGN] information sémantique
[Termes IGN] intelligence artificielle
[Termes IGN] langage de requête
[Termes IGN] RDF
[Termes IGN] SPARQLRésumé : (auteur) Stop-and-move semantic trajectories are segmented trajectories where the stops and moves are semantically enriched with additional data. A query language for semantic trajectory datasets has to include selectors for stops or moves based on their enrichments and sequence expressions that define how to match the results of selectors with the sequence the semantic trajectory defines. This article addresses the problem of searching semantic trajectories, using stop-and-move sequence expressions. The article first proposes a formal framework to define semantic trajectories and introduces stop-and-move sequence expressions, with well-defined syntax and semantics, which act as an expressive query language for semantic trajectories. Then, it describes a concrete semantic trajectory model in RDF, defines SPARQL stop-and-move sequence expressions and discusses strategies to compile such expressions into SPARQL queries. Lastly, the article specifies user-friendly keyword search expressions over semantic trajectories based on the use of keywords to specify stop-and-move queries, and the adoption of terms with predefined semantics to compose sequence expressions. It then shows how to compile such keyword search expressions into SPARQL queries. Finally, it provides a proof-of-concept experiment over a semantic trajectory dataset constructed with user-generated content from Flickr, combined with Wikipedia data. Numéro de notice : A2021-270 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1793157 Date de publication en ligne : 20/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1793157 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97328
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 793 - 818[article]