[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierThe delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods Type de document : Article/Communication Auteurs : Akhtar Jamil, Auteur ; Bulent Bayram, Auteur Année de publication : 2021 Article en page(s) : pp 758 - 772 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de décalage moyen
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] Camellia sinensis
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] exploitation agricole
[Termes IGN] extraction de la végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] segmentation hiérarchique
[Termes IGN] TurquieRésumé : (Auteur) Rize district is an important tea production site in Turkey, which is known for high quality tea. Determining the temporal changes is very crucial from the viewpoint of agricultural management and protection of tea areas. In addition, delineation of tea gardens using photogrammetric evaluation techniques for a single orthoimage takes approximately 8 h of labour work, which is both costly and time-consuming process. To overcome these issues, a method is proposed for demarcation of tea gardens from high-resolution orthoimages. In this article, a hierarchical object-based segmentation using mean-shift (MS) and supervised machine learning (ML) methods are investigated for delineation of tea gardens. First, the MS algorithm was applied to partition the images into homogeneous segments (objects) and then from each segment, various spectral, spatial and textural features were extracted. Finally, four most widely used supervised ML classifiers, support vector machine (SVM), artificial neural network (ANN), random forest (RF), and decision trees (DTs), were selected for classification of objects into tea gardens and other types of trees. Photogrammetrically evaluated tea garden borders were taken as reference data to evaluate the performance of the proposed methods. The experiments showed that all selected supervised classifiers were effective for delineation of the tea gardens from high-resolution images. Numéro de notice : A2021-293 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622597 Date de publication en ligne : 19/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1622597 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97349
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 758 - 772[article]Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data Type de document : Article/Communication Auteurs : Vijay Pratap Yadav, Auteur ; Rajendra Prasad, Auteur ; Ruchi Bala, Auteur Année de publication : 2021 Article en page(s) : pp 791 - 802 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] blé (céréale)
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] Leaf Area Index
[Termes IGN] polarisation
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) The time-series synthetic aperture radar (SAR) and optical satellite data were used for the leaf area index (LAI) estimation of wheat crop using modified water cloud model (MWCM) in Varanasi district, India. In this study, MWCM was developed by including scale invariant vegetation fraction (fveg) in the old WCM for the estimation of LAI. The non-linear least square optimization technique was applied to determine the optimum model parameters for the retrieval of LAI which was further validated with the observed LAI. The estimated values of LAI by MWCM at VV polarization shows good correspondence (R2 = 0.901 and RMSE = 0.456 m2/m2) with the observed LAI values than at VH polarization (R2 = 0.742 and RMSE = 0.521 m2/m2).The MWCM shows great potential for the LAI estimation of wheat crop by incorporating optical data (i.e. Sentinel-2) in terms of fveg with SAR data (i.e. Sentinel-1A). Numéro de notice : A2021-294 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624984 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624984 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97352
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 791 - 802[article]DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques Type de document : Article/Communication Auteurs : Ali H. Ahmed Suliman, Auteur ; W. Gumindoga, Auteur ; Taymoor A. Awchi, Auteur ; Ayob Katimon, Auteur Année de publication : 2021 Article en page(s) : pp 803 - 819 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] carte topographique
[Termes IGN] Iran
[Termes IGN] limite de résolution géométrique
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] ruissellementRésumé : (Auteur) The accurate estimation of terrain characteristics is central in rainfall runoff modelling. In this study, influences of Digital Elevation Models (DEMs) obtained from different sources, resolutions and rescaling techniques are compared for Peak flow prediction in a large-scale watershed by the Topographic driven model (TOPMODEL). The comparison includes graphical representation and statistical assessments using daily time series data. As a result, DEM extracted from contour map (DEM-Con) showed better performance when DEM resolutions increased, but the Advanced Space-borne Thermal Emission and Reflection Radiometer (DEM-Aster) continued to achieve less Relative Error (RE) at low resolution. Moreover, better RE values were found at cubic convolution technique to predict the peaks followed by nearest neighbor and bilinear. In addition, this study indicated that DEM resolution is more sensitive factor for TOPMODEL simulation compared to DEM sources and rescaling techniques for streamflow and peaks prediction. Numéro de notice : A2021-295 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622599 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1622599 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97355
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 803 - 819[article]