IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 59 n° 4Paru le : 01/04/2021 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques Type de document : Article/Communication Auteurs : Miao Tian, Auteur ; Hao Chen, Auteur ; Guanghui Liu, Auteur Année de publication : 2021 Article en page(s) : pp 2781 - 2793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection des nuages
[Termes IGN] dioxyde de carbone
[Termes IGN] image infrarouge
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] régression linéaire
[Termes IGN] vapeur d'eauRésumé : (auteur) Accurate cloud detection using infrared (IR) data is very challenging due to the limitations and uncertainties from many aspects in the satellite IR remote sensing. This article proposes an end-to-end cloud detection method for the Cross-track IR Sounder (CrIS) using machine learning (ML) techniques. The brightness temperatures from paired CrIS channels in the longwave and midwave water vapor bands and the longwave and shortwave CO 2 bands are used. After obtaining the linear regression coefficients for each of the selected channel pairs, a complete set of CrIS full spectral resolution (FSR) cloud detection index (FCDI) is derived from the temperature difference between the regression and observation for each channel pair. It is shown that FCDI captures cloud location and structure well by comparing with the cloud products (CPs) from the Visible IR Imaging Radiometer Suite (VIIRS). After collocating FCDI with VIIRS CP, ML techniques such as the extreme learning machine, support vector machine, and multilayer perceptron are used to train the collocated FCDIs for cloud detection. Simulation results show that the accuracy of FCDI cloud detection is slightly above 80%. Moreover, the results encourage the use of water vapor bands in FCDI, in addition to CO 2 bands. Numéro de notice : A2021-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020120 Date de publication en ligne : 18/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020120 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97387
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2781 - 2793[article]Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines / Rogério Galante Negri in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines Type de document : Article/Communication Auteurs : Rogério Galante Negri, Auteur ; Alejandro C. Frery, Auteur ; Wallace Casaca, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2863 - 2876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse de sensibilité
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] détection des nuages
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] processus stochastique
[Termes IGN] zone homogèneRésumé : (auteur) Change detection is a topic of great interest in remote sensing. A good similarity metric to compute the variations among the images is the key to high-quality change detection. However, most existing approaches rely on the fixed threshold values or the user-provided ground truth in order to be effective. The inability to deal with artificial objects such as clouds and shadows is a significant difficulty for many change-detection methods. We propose a new unsupervised change-detection framework to address those critical points. The notion of homogeneous regions is introduced together with a set of geometric operations and statistic-based criteria to characterize and distinguish formally the change and nonchange areas in a pair of remote sensing images. Moreover, a robust and statistically well-posed family of stochastic distances is also proposed, which allows comparing the probability distributions of different regions/objects in the images. These stochastic measures are then used to train a support-vector-machine-based approach in order to detect the change/nonchange areas. Three study cases using the images acquired with different sensors are given in order to compare the proposed method with other well-known unsupervised methods. Numéro de notice : A2021-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009483 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009483 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97389
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2863 - 2876[article]Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network / Nantheera Anantrasirichai in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network Type de document : Article/Communication Auteurs : Nantheera Anantrasirichai, Auteur ; Juliet Biggs, Auteur ; Krisztina Kelevitz, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2940 - 2950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effet atmosphérique
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] interpolation spatiale
[Termes IGN] matrice
[Termes IGN] optimisation (mathématiques)
[Termes IGN] représentation parcimonieuse
[Termes IGN] Royaume-Uni
[Termes IGN] zone urbaineRésumé : (auteur) The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of nonexpert stakeholders a challenge. Here, we explore the applicability of deep learning approaches by adapting a pretrained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the U.K. where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides, and tunneling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exist to construct a balanced training data set, and the deformation signals are slower and more localized than in previous applications. We propose three enhancement methods to tackle these problems: 1) spatial interpolation with modified matrix completion; 2) a synthetic training data set based on the characteristics of the real U.K. velocity map; and 3) enhanced overwrapping techniques. Using velocity maps spanning 2015–2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides, and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems. Numéro de notice : A2021-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-020-00323-6 Date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97391
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2940 - 2950[article]Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data Type de document : Article/Communication Auteurs : Xiao-Ming Li, Auteur ; Yan Sun, Auteur ; Qiang Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 3040 - 3053 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Arctique, océan
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] glace de mer
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion
[Termes IGN] texture d'imageRésumé : (auteur) In this article, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization [vertical–horizontal (VH) or horizontal–vertical (HV)] data in extra-wide (EW) swath mode based on the support vector machine (SVM) method. The classification basis includes the S1 radar backscatter and texture features, which are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e., entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparisons based on a few cases show good agreements between the synthetic aperture radar (SAR)-derived sea ice cover using the proposed method and visual inspections, of which the accuracy reaches approximately 90%–95%. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of the extracted sea ice cover by using S1 data is more than 80%. Numéro de notice : A2021-284 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007789 Date de publication en ligne : 20/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007789 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97392
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3040 - 3053[article]Unsupervised pansharpening based on self-attention mechanism / Ying Qu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Unsupervised pansharpening based on self-attention mechanism Type de document : Article/Communication Auteurs : Ying Qu, Auteur ; Razieh Kaviani Baghbaderani, Auteur ; Hairong Qi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3192 - 3208 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification non dirigée
[Termes IGN] image multibande
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] précision infrapixellaire
[Termes IGN] reconstruction d'image
[Termes IGN] segmentation d'imageRésumé : (auteur) Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art. Numéro de notice : A2021-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009207 Date de publication en ligne : 23/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009207 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97394
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3192 - 3208[article]Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Rotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss Type de document : Article/Communication Auteurs : Ruoqiao Jiang, Auteur ; Shaohui Mei, Auteur ; Mingyang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3326 - 3337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] invariant
[Termes IGN] réseau neuronal siamois
[Termes IGN] rotationRésumé : (auteur) Rotation-invariant features are of great importance for object detection and image classification in very-high-resolution (VHR) optical remote sensing images. Though multibranch convolutional neural network (mCNN) has been demonstrated to be very effective for rotation-invariant feature learning, how to effectively train such a network is still an open problem. In this article, a nested Siamese structure (NSS) is proposed for training the mCNN to learn effective rotation-invariant features, which consists of an inner Siamese structure to enhance intraclass cohesion and an outer Siamese structure to enlarge interclass margin. Moreover, a double center loss (DCL) function, in which training samples from the same class are mapped closer to each other while those from different classes are mapped far away to each other, is proposed to train the proposed NSS even with a small amount of training samples. Experimental results over three benchmark data sets demonstrate that the proposed NSS trained by DCL is very effective to encounter rotation varieties when learning features for image classification and outperforms several state-of-the-art rotation-invariant feature learning algorithms even when a small amount of training samples are available. Numéro de notice : A2021-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3021283 Date de publication en ligne : 18/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3021283 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97395
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3326 - 3337[article]Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; Tahereh Bahraini, Auteur ; Hadi Sadoghi Yazdi, Auteur Année de publication : 2021 Article en page(s) : pp 3266 - 3276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification bayesienne
[Termes IGN] classification floue
[Termes IGN] distribution de Gauss
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] image hyperspectrale
[Termes IGN] Matlab
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] variableRésumé : (auteur) The hyperspectral-image (HSI) noise-reduction step is a very significant preprocessing phase of data-quality enhancement. It has been attracting immense research attention in the remote sensing and image processing domains. Many methods have been developed for HSI restoration, the goal of which is to remove noise from the whole HSI cube simultaneously without considering the spectral–spatial similarity. When a noise-removal algorithm is used globally to the entire data set, it would not eliminate all levels of noise, effectively. Furthermore, most of the existing methods remove independent and identically distributed (i.i.d.) Gaussian noise. The real scenarios are much more complicated than this assumption. The complexity created by natural noise that has a non-i.i.d. structure leads to inefficient methods containing underestimation and invalid performance. In this article, we calculated the spatial–spectral similarity criteria by defining a set of clustering-based latent variables (CLVs) in a Bayesian framework to improve the robustness. These criteria can be extracted using the clustering operators. Then, by applying the CLV to the variational Bayesian model, we investigated a new low-rank matrix factorization denoising approach based on the proposed clustering-based latent variable (CLV-LRMF) to remove noise with the non-i.i.d. mixture of Gaussian structures. Finally, we switched to the GPU for MATLAB implementation to reduce the runtime. The experimental results show that the performance has been improved by applying the proposed CLV and demonstrate the effectiveness of the proposed CLV-LRMF over other state-of-the-art methods. Numéro de notice : A2021-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939512 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.1109/TGRS.2019.2939512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97396
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3266 - 3276[article]An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects / Linyuan Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects Type de document : Article/Communication Auteurs : Linyuan Li, Auteur ; Xihan Mu, Auteur ; Maxime Soma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3547 - 3566 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de partie cachée
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] itération
[Termes IGN] semis de pointsRésumé : (auteur) Occlusion effect, an inherent problem of terrestrial laser scanning (TLS) measurements, limits the potential of TLS data in tree attribute estimation. Multiple scans seek to mitigate this effect to provide enhanced scan completeness. However, the numbers and locations of the scans (i.e., the scan design) are usually determined via a subjective assessment of the tree density, spatial patterns of trees, and attributes to be derived. These could cause suboptimal scan completeness and limit tree attribute estimation. This study proposed an iterative-mode scan design to minimize the occlusion effect. First, we introduced a PoTo index based on visibility analysis to evaluate how many trees can be scanned from a location and to select effective candidates for the optimal TLS location. Second, we introduced a cumulative degree of ring closure (CDRC) to quantify the scan completeness for each candidate and determine the optimal TLS location. The TLS data sets of virtual forests with field-measured and synthetic plot parameter settings were simulated according to iterative- and regular-mode designs by using a Heidelberg light detection and ranging (LiDAR) Operations Simulator (HELIOS). The results demonstrated that an iterative-mode design can improve the scan completeness of trees compared to the regular-mode design. The tree attribute (diameter at breast height (DBH), tree height, stem curve, and crown volume) estimates of the iterative-mode design were less erroneous than those of the regular-mode design (e.g., the root-mean-square error (RMSE) could decrease the stem curve estimation by 38% and the crown volume estimation by 15%). This study suggests that the iterative-mode design can obtain an improved quality of the TLS data, especially for dense stands. Numéro de notice : A2021-288 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3018643 Date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018643 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97397
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3547 - 3566[article]