Descripteur
Documents disponibles dans cette catégorie (106)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A geometry-aware attention network for semantic segmentation of MLS point clouds Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Yongyang Xu, Auteur ; Qinjun Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 138 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] figure géométrique
[Termes IGN] fonction de perte
[Termes IGN] graphe
[Termes IGN] Perceptron multicouche
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Semantic segmentation of mobile laser scanning (MLS) point clouds can provide meaningful 3 D semantic information of urban facilities for various applications. However, it still remains a challenge to extract accurate 3 D semantic information from MLS point cloud data due to its irregular 3 D geometric structure in a large-scale outdoor scene. To this end, this study develops a geometry-aware attention point network (GAANet) with geometric properties of the point cloud as a reference. Specifically, the proposed method first builds a graph-like region for each input point to establish the geometric correlation toward its neighbors for robustly descripting local geometry-aware features. Thereafter, the method introduces a novel multi-head attention mechanism to efficiently learn local discriminative features on the constructed graphs and a feature combination operation to capture both local and global geometric dependencies inside fused point features for significantly facilitating the segmentation of small or incomplete 3 D objects at point-level. Finally, an adaptive loss function is appended to handle class imbalance for the overall performance improvement. The validation experiments on two challenging benchmarks demonstrate the effectiveness and powerful generation ability of the proposed method, which achieves state-of-the-art performance with mean IoU of 65.09% and 95.20% in the Toronto-3D and Oakland 3-D MLS dataset, respectively. Numéro de notice : A2023-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2022.2111572 Date de publication en ligne : 24/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2111572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102309
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023) . - pp 138 - 161[article]Automatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
[article]
Titre : Automatic registration method of multi-source point clouds based on building facades matching in urban scenes Type de document : Article/Communication Auteurs : Yumin Tan, Auteur ; Yanzhe Shi, Auteur ; Yunxin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 767 - 782 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de formes
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fusion de données multisource
[Termes IGN] modélisation 3D
[Termes IGN] photogrammétrie aérienne
[Termes IGN] points registration
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) Both UAV photogrammetry and lidar have become common in deriv- ing three-dimensional models of urban scenes, and each has its own advantages and disadvantages. However, the fusion of these multisource data is still challenging, in which registration is one of the most important stages. In this paper, we propose a method of coarse point cloud registration which consists of two steps. The first step is to extract urban building facades in both an oblique photogrammetric point cloud and a lidar point cloud. The second step is to align the two point clouds using the extracted building facades. Object Vicinity Distribution Feature (Dijkman and Van Den Heuvel 2002) is introduced to describe the distribution of building facades and register the two heterologous point clouds. This method provides a good initial state for later refined registration process and is translation, rotation, and scale invariant. Experiment results show that the accuracy of this proposed automatic registration method is equiva- lent to the accuracy of manual registration with control points. Numéro de notice : A2022-882 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00069R3 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00069R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102206
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 767 - 782[article]Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution / Zhenfeng Shao in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
[article]
Titre : Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution Type de document : Article/Communication Auteurs : Zhenfeng Shao, Auteur ; Yuan Zhang, Auteur ; Cheng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 550 - 567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] image Gaofen
[Termes IGN] image Landsat-OLI
[Termes IGN] scène urbaine
[Termes IGN] surface imperméableRésumé : (auteur) Impervious surface mapping is essential for urban environmental studies. Spectral Mixture Analysis (SMA) and its extensions are widely employed in impervious surface estimation from medium-resolution images. For SMA, inappropriate endmember combinations and inadequate endmember classes have been recognized as the primary reasons for estimation errors. Meanwhile, the spectral-only SMA, without considering urban spatial distribution, fails to consider spectral variability in an adequate manner. The lack of endmember class diversity and their spatial variations lead to over/underestimation. To mitigate these issues, this study integrates a hierarchical strategy and spatially varied endmember spectra to map impervious surface abundance, taking Wuhan and Wuzhou as two study areas. Specifically, the piecewise convex multiple-model endmember detection algorithm is applied to automatically hierarchize images into three regions, and distinct endmember combinations are independently developed in each region. Then, spatially varied endmember spectra are synthesized through neighboring spectra using the distance-based weight. Comparative analysis indicates that the proposed method achieves better performance than Hierarchical SMA and Fixed Four-endmembers SMA in terms of MAE, SE, and RMSE. Further analysis suggests that the hierarchical strategy can expand endmember class types and considerably improve the performance for the study areas in general, specifically in less developed areas. Moreover, we find that spatially varied endmember spectra facilitate the reduction of heterogeneous surface material variations and achieve the improved performance in developed areas. Numéro de notice : A2022-890 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2028535 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2028535 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102237
in Geo-spatial Information Science > vol 25 n° 4 (December 2022) . - pp 550 - 567[article]A joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds / Lina Fang in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)PermalinkMeasuring visual walkability perception using panoramic street view images, virtual reality, and deep learning / Yunqin Li in Sustainable Cities and Society, vol 86 (November 2022)PermalinkApplication of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)PermalinkDART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)PermalinkApplication oriented quality evaluation of Gaofen-7 optical stereo satellite imagery / Jiaojiao Tian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkCooperative image orientation considering dynamic objects / P. Trusheim in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkSemantic segmentation of urban textured meshes through point sampling / Grégoire Grzeczkowicz in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)PermalinkExploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)PermalinkProcedural urban forestry / Till Niese in ACM Transactions on Graphics, TOG, Vol 41 n° 2 (April 2022)PermalinkLiDAR-based method for analysing landmark visibility to pedestrians in cities: case study in Kraków, Poland / Krystian Pyka in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)Permalink