[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDetection of rainstorm pattern in arid regions using MODIS NDVI time series analysis / Mohamed E. Hereher in Geocarto international, vol 36 n° 8 ([01/05/2021])
[article]
Titre : Detection of rainstorm pattern in arid regions using MODIS NDVI time series analysis Type de document : Article/Communication Auteurs : Mohamed E. Hereher, Auteur Année de publication : 2021 Article en page(s) : pp 861 - 873 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Arabie
[Termes IGN] bassin hydrographique
[Termes IGN] gestion de l'eau
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orage
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] ressources en eau
[Termes IGN] série temporelle
[Termes IGN] zone arideRésumé : (auteur) The normalized difference vegetation index (NDVI) was used to delineate potential water suppliers west of the Arabian Peninsula. Time series NDVI data extracted from the moderate resolution imaging spectroradiometer NDVI product were used to develop a robust estimate of rainstorm frequency and intensity. A total of 216 NDVI images were acquired between February 2000 and January 2018 to carry out this investigation. As NDVI values of negative records correspond to water, it was possible to address and delineate the occurrence and duration of temporal ponded water. Results showed that at least 7 locations are potential to harvest water from flashfloods. Some locations witnessed 10, 11 and 13 rainstorms and ponding of water ranged from 1 to 20 months. These locations, if properly managed, could sustain a fresh water resource for local uses. The study demonstrates that NDVI time series curves could help identify the time/duration of previous rainstorms. Numéro de notice : A2021-482 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1629643 Date de publication en ligne : 19/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1629643 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97433
in Geocarto international > vol 36 n° 8 [01/05/2021] . - pp 861 - 873[article]Electrical resistivity, remote sensing and geographic information system approach for mapping groundwater potential zones in coastal aquifers of Gurpur watershed / H.S. Virupaksha in Geocarto international, vol 36 n° 8 ([01/05/2021])
[article]
Titre : Electrical resistivity, remote sensing and geographic information system approach for mapping groundwater potential zones in coastal aquifers of Gurpur watershed Type de document : Article/Communication Auteurs : H.S. Virupaksha, Auteur ; K.N. Lokesh, Auteur Année de publication : 2021 Article en page(s) : pp 888 - 902 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aquifère
[Termes IGN] bassin hydrographique
[Termes IGN] carte des pentes
[Termes IGN] carte hydrogéologique
[Termes IGN] eau souterraine
[Termes IGN] géomorphologie locale
[Termes IGN] Karnataka (Inde)
[Termes IGN] lithologie
[Termes IGN] occupation du sol
[Termes IGN] potentiel hydrogène
[Termes IGN] précipitation
[Termes IGN] résistivité
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du solRésumé : (auteur) Electrical resistivity method and RS & GIS techniques are very much useful in identification of potential aquifer zones for exploitation, management and recharge of groundwater. Vertical Electrical Soundings are conducted at 35 locations in Gurpur watershed using Schlumberger array. The thematic layers like porosity, transmissivity and hydraulic conductivity are prepared using electrical resistivity data. Total of 13 thematic layers are used for vector integration and identification of Groundwater Potential Zones (GWPZ). The numerical weights and ranks are assigned to the themes based on their relationship with groundwater. The findings shows that the depth to bedrock varies from 9.1 to 44.4 m and most of the mid land and low land region shows moderate to high depths of about 25–44 m. The GWPZ are classified into five classes namely, Very Good (≈21.02 km2), Good (≈231.35 km2), Moderate (≈420.76 km2), Poor (≈185.05 km2) and Very Poor (≈19.56 km2). The Good and Moderate categories cover ≈75% of total area. Numéro de notice : A2021-483 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624986 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624986 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97442
in Geocarto international > vol 36 n° 8 [01/05/2021] . - pp 888 - 902[article]Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])
[article]
Titre : Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey Type de document : Article/Communication Auteurs : Alkan Günlü, Auteur ; İlker Ercanlı, Auteur ; Muammer Şenyurt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 918 - 935 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] échantillonnage
[Termes IGN] fonction de base radiale
[Termes IGN] gestion forestière
[Termes IGN] image proche infrarouge
[Termes IGN] image Worldview
[Termes IGN] matrice de co-occurrence
[Termes IGN] peuplement forestier
[Termes IGN] Pinus nigra
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] texture d'image
[Termes IGN] TurquieRésumé : (auteur) The aim of this research is to assess some stand parameters such as stand volume (SV), basal area (BA), number of trees (NT) and aboveground biomass (AGB) of pure Crimean pine forest stands in Turkey by using ground measurements and remote sensing techniques. For this purpose, 86 sample plots were collected from pure Crimean pine stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. The stand parameters of each sample area were estimated using the data obtained from the sample plots. Subsequently, we calculated the values of contrast (CON), correlation (COR), dissimilarity (DIS), entropy (ENT), homogeneity (HOM), mean (M), second moment (SM) and variance (VAR) from WorldView-2 imagery using a grey-level co-occurrence matrix method. Eight textural features and twelve different window sizes ranging from 3 × 3 to 25 × 25 were generated from blue, green, red and near-infrared bands of the WorldView-2 satellite image. For predicting the relationships between WorldView-2 textural features and stand parameters of each sample plot, regression models were developed by using multiple linear regression (MLR) analysis. Additionally, artificial neural networks (ANNs) based on the multilayer perceptron (MLP) and the radial basis function (RBF) architectures were trained by comparing various numbers of neurons and activation functions in their network types. The results showed that the MLR models had low the coefficient of determination (R2) values (0.32 for SV, 0.35 for BA, 0.33 for NT and 0.34 for AGB), and the most of the ANNs models (MLP and RBF) were better than the regression models for estimating stand parameters. The ANNs model containing MLP and RBF for SV (R2 = 0.40; R2 = 0.56), for BA (R2 = 0.34; R2 = 0.51), for NT (R2 = 0.34; R2 = 0.37) and for AGB (R2 = 0.34, R2 = 0.57) were found the best results, respectively. Our results revealed that the ANNs models developed with WorldView-2 satellite image were beneficial to estimate stand parameters better than the MLR model in pure Crimean pine stands. Numéro de notice : A2021-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1629644 Date de publication en ligne : 25/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1629644 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97443
in Geocarto international > vol 36 n° 8 [01/05/2021] . - pp 918 - 935[article]