Remote sensing . vol 13 n° 7Paru le : 01/04/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)
[article]
Titre : Graph convolutional networks by architecture search for PolSAR image classification Type de document : Article/Communication Auteurs : Hongying Liu, Auteur ; Derong Xu, Auteur ; Tianwen Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1404 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] échantillon
[Termes IGN] graphe
[Termes IGN] image AIRSAR
[Termes IGN] image radar moirée
[Termes IGN] noeud
[Termes IGN] polarimétrie radar
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Classification of polarimetric synthetic aperture radar (PolSAR) images has achieved good results due to the excellent fitting ability of neural networks with a large number of training samples. However, the performance of most convolutional neural networks (CNNs) degrades dramatically when only a few labeled training samples are available. As one well-known class of semi-supervised learning methods, graph convolutional networks (GCNs) have gained much attention recently to address the classification problem with only a few labeled samples. As the number of layers grows in the network, the parameters dramatically increase. It is challenging to determine an optimal architecture manually. In this paper, we propose a neural architecture search method based GCN (ASGCN) for the classification of PolSAR images. We construct a novel graph whose nodes combines both the physical features and spatial relations between pixels or samples to represent the image. Then we build a new searching space whose components are empirically selected from some graph neural networks for architecture search and develop the differentiable architecture search method to construction our ASGCN. Moreover, to address the training of large-scale images, we present a new weighted mini-batch algorithm to reduce the computing memory consumption and ensure the balance of sample distribution, and also analyze and compare with other similar training strategies. Experiments on several real-world PolSAR datasets show that our method has improved the overall accuracy as much as 3.76% than state-of-the-art methods. Numéro de notice : A2021-350 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13071404 Date de publication en ligne : 06/04/2021 En ligne : https://doi.org/10.3390/rs13071404 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97600
in Remote sensing > vol 13 n° 7 (April-1 2021) . - n° 1404[article]Shoreline changes along Northern Ibaraki Coast after the great East Japan earthquake of 2011 / Quang Nguyen Hao in Remote sensing, vol 13 n° 7 (April-1 2021)
[article]
Titre : Shoreline changes along Northern Ibaraki Coast after the great East Japan earthquake of 2011 Type de document : Article/Communication Auteurs : Quang Nguyen Hao, Auteur ; Satoshi Takewaka, Auteur Année de publication : 2021 Article en page(s) : n° 1399 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection de changement
[Termes IGN] effondrement de terrain
[Termes IGN] image ALOS-AVNIR2
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-ASTER
[Termes IGN] Japon
[Termes IGN] Normalized Difference Water Index
[Termes IGN] séisme
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (auteur) In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions. Numéro de notice : A2021-351 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13071399 Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.3390/rs13071399 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97601
in Remote sensing > vol 13 n° 7 (April-1 2021) . - n° 1399[article]Urban heat island formation in greater Cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient / Darshana Athukorala in Remote sensing, vol 13 n° 7 (April-1 2021)
[article]
Titre : Urban heat island formation in greater Cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient Type de document : Article/Communication Auteurs : Darshana Athukorala, Auteur ; Yuji Murayama, Auteur Année de publication : 2021 Article en page(s) : n° 1396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] apprentissage automatique
[Termes IGN] espace vert
[Termes IGN] Google Earth Engine
[Termes IGN] ilot thermique urbain
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TIRS
[Termes IGN] image Landsat-TM
[Termes IGN] image Terra-MODIS
[Termes IGN] Le Caire
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] urbanisme
[Termes IGN] variation diurne
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (auteur) An urban heat island (UHI) is a significant anthropogenic modification of urban land surfaces, and its geospatial pattern can increase the intensity of the heatwave effects. The complex mechanisms and interactivity of the land surface temperature in urban areas are still being examined. The urban–rural gradient analysis serves as a unique natural opportunity to identify and mitigate ecological worsening. Using Landsat Thematic Mapper (TM), Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), Land Surface Temperature (LST) data in 2000, 2010, and 2019, we examined the spatial difference in daytime and nighttime LST trends along the urban–rural gradient in Greater Cairo, Egypt. Google Earth Engine (GEE) and machine learning techniques were employed to conduct the spatio-temporal analysis. The analysis results revealed that impervious surfaces (ISs) increased significantly from 564.14 km2 in 2000 to 869.35 km2 in 2019 in Greater Cairo. The size, aggregation, and complexity of patches of ISs, green space (GS), and bare land (BL) showed a strong correlation with the mean LST. The average urban–rural difference in mean LST was −3.59 °C in the daytime and 2.33 °C in the nighttime. In the daytime, Greater Cairo displayed the cool island effect, but in the nighttime, it showed the urban heat island effect. We estimated that dynamic human activities based on the urban structure are causing the spatial difference in the LST distribution between the day and night. The urban–rural gradient analysis indicated that this phenomenon became stronger from 2000 to 2019. Considering the drastic changes in the spatial patterns and the density of IS, GS, and BL, urban planners are urged to take immediate steps to mitigate increasing surface UHI; otherwise, urban dwellers might suffer from the severe effects of heatwaves. Numéro de notice : A2021-352 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13071396 Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.3390/rs13071396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97602
in Remote sensing > vol 13 n° 7 (April-1 2021) . - n° 1396[article]