Remote sensing . vol 13 n° 8Paru le : 15/04/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUnsupervised multi-level feature extraction for improvement of hyperspectral classification / Qiaoqiao Sun in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Unsupervised multi-level feature extraction for improvement of hyperspectral classification Type de document : Article/Communication Auteurs : Qiaoqiao Sun, Auteur ; Xuefeng Liu, Auteur ; Salah Bourennane, Auteur Année de publication : 2021 Article en page(s) : n° 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] codage
[Termes IGN] convolution (signal)
[Termes IGN] déconvolution
[Termes IGN] échantillonnage d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] observation multiniveauxRésumé : (auteur) Deep learning models have strong abilities in learning features and they have been successfully applied in hyperspectral images (HSIs). However, the training of most deep learning models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In addition, single-level features from a single layer are usually considered, which may result in the loss of some important information. Using multiple networks to obtain multi-level features is a solution, but at the cost of longer training time and computational complexity. To solve these problems, a novel unsupervised multi-level feature extraction framework that is based on a three dimensional convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an unsupervised way without involving labeled samples. Moreover, the multi-level features are directly obtained from the encoded layers with different scales and resolutions, which is more efficient than using multiple networks to get them. The effectiveness of the proposed multi-level features is verified on two hyperspectral data sets. The results demonstrate that the proposed method has great promise in unsupervised feature learning and can help us to further improve the hyperspectral classification when compared with single-level features. Numéro de notice : A2021-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081602 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081602 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97628
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1602[article]Detecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland / Oula Seitsonen in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Detecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland Type de document : Article/Communication Auteurs : Oula Seitsonen, Auteur ; Janne Ikäheimo, Auteur Année de publication : 2021 Article en page(s) : n° 1599 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte archéologique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] Finlande
[Termes IGN] fouille archéologique
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] toundraRésumé : (auteur) Open access airborne laser scanning (ALS) data have been available in Finland for over a decade and have been actively applied by the Finnish archaeologists in that time. The low resolution of this laser scanning 2008–2019 dataset (0.5 points/m2), however, has hindered its usability for archaeological prospection. In the summer of 2020, the situation changed markedly, when the Finnish National Land Survey started a new countrywide ALS survey with a higher resolution of 5 points/m2. In this paper we present the first results of applying this newly available ALS material for archaeological studies. Finnish LIDARK consortium has initiated the development of semi-automated approaches for visualizing, detecting, and analyzing archaeological features with this new dataset. Our first case studies are situated in the Alpine tundra environment of Sápmi in northern Finland, and the assessed archaeological features range from prehistoric sites to indigenous Sámi reindeer herding features and Second Word War-era German military structures. Already the initial analyses of the new ALS-5p data show their huge potential for locating, mapping, and assessing archaeological material. These results also suggest an imminent burst in the number of known archaeological sites, especially in the poorly accessible and little studied northern wilderness areas, when more data become available. Numéro de notice : A2021-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081599 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081599 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97629
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1599[article]Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing / Shangharsha Thapa in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing Type de document : Article/Communication Auteurs : Shangharsha Thapa, Auteur ; Virginia Garcia Millan, Auteur ; Lars Eklundh, Auteur Année de publication : 2021 Article en page(s) : n° 1597 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multiéchelle
[Termes IGN] capteur multibande
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelle
[Termes IGN] Suède
[Termes IGN] surveillance forestière
[Termes IGN] variation saisonnièreRésumé : (auteur) The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different aspects of forest phenology based on observations from these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains a challenge. Accordingly, this research explores the potential of near-surface sensors to track the temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS, Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Vegetation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green & Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The regression analysis between time series of NDVI data from different sensors shows the high Pearson’s correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and significant differences in slope during green-up and senescence periods. SRS showed the most distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the canopy better than the other indices, with a well-defined start, end, and peak of the season, and was most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS) could be predicted with an accuracy of Numéro de notice : A2021-382 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081597 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081597 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97633
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1597[article]Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping / Jiadi Yin in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping Type de document : Article/Communication Auteurs : Jiadi Yin, Auteur ; Ping Fu, Auteur ; Nicholas A.S. Hamm, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1579 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'utilisation du sol
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] données massives
[Termes IGN] image Sentinel-MSI
[Termes IGN] intégration de données
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) Information about urban land use is important for urban planning and sustainable development. The emergence of geospatial big data (GBD), increased the availability of remotely sensed (RS) data and the development of new methods for data integration to provide new opportunities for mapping types of urban land use. However, the modes of RS and GBD integration are diverse due to the differences in data, study areas, classifiers, etc. In this context, this study aims to summarize the main methods of data integration and evaluate them via a case study of urban land use mapping in Hangzhou, China. We first categorized the RS and GBD integration methods into decision-level integration (DI) and feature-level integration (FI) and analyzed their main differences by reviewing the existing literature. The two methods were then applied for mapping urban land use types in Hangzhou city, based on urban parcels derived from the OpenStreetMap (OSM) road network, 10 m Sentinel-2A images, and points of interest (POI). The corresponding classification results were validated quantitatively and qualitatively using the same testing dataset. Finally, we illustrated the advantages and disadvantages of both approaches via bibliographic evidence and quantitative analysis. The results showed that: (1) The visual comparison indicates a generally better performance of DI-based classification than FI-based classification; (2) DI-based urban land use mapping is easy to implement, while FI-based land use mapping enables the mixture of features; (3) DI-based and FI-based methods can be used together to improve urban land use mapping, as they have different performances when classifying different types of land use. This study provides an improved understanding of urban land use mapping in terms of the RS and GBD integration strategy. Numéro de notice : A2021-383 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081579 Date de publication en ligne : 19/04/2021 En ligne : https://doi.org/10.3390/rs13081579 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97634
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1579[article]