Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 87 n° 5Paru le : 01/05/2021 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2021051 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierInversion of solar-induced chlorophyll fluorescence using polarization measurements of vegetation / Haiyan Yao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
[article]
Titre : Inversion of solar-induced chlorophyll fluorescence using polarization measurements of vegetation Type de document : Article/Communication Auteurs : Haiyan Yao, Auteur ; Ziying Li, Auteur ; Yang Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 331-338 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] chlorophylle
[Termes IGN] couvert végétal
[Termes IGN] données polarimétriques
[Termes IGN] fluorescence
[Termes IGN] polarisationRésumé : (Auteur) In vegetation remote sensing, the apparent radiation of the vegetation canopy is often combined with three components derived from different parts of vegetation that have different production mechanisms and optical properties: volume scattering Lvol, polarized light Lpol, and chlorophyll fluorescence ChlF. The chlorophyll fluorescence plays a very important role in vegetation remote sensing, and the polarization information in vegetation remote sensing has become an effective way to characterize the physical characteristics of vegetation. This study analyzes the difference between these three types of radiation flux and utilizes polarization radiation to separate them from the apparent radiation of the vegetation canopy. Specifically, solar-induced chlorophyll fluorescence is extracted from vegetation canopy radiation data using standard Fraunhofer-line discrimination. The results show that polarization measurements can quantitatively separate Lvol, Lpol, and ChlF and extract the solar-induced chlorophyll fluorescence. This study improves our understanding of the light-scattering properties of vegetation canopies and provides insights for developing building models and research algorithms. Numéro de notice : A2021-365 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.5.331 Date de publication en ligne : 01/05/2021 En ligne : https://doi.org/10.14358/PERS.87.5.331 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97694
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 5 (May 2021) . - pp 331-338[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021051 SL Revue Centre de documentation Revues en salle Disponible Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
[article]
Titre : Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery Type de document : Article/Communication Auteurs : Neema Nicodemus Lyimo, Auteur ; Fang Luo, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur Année de publication : 2021 Article en page(s) : pp 339-348 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'images
[Termes IGN] distance euclidienne
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données ouvertes
[Termes IGN] image Landsat
[Termes IGN] incertitude des données
[Termes IGN] jeu de données localisées
[Termes IGN] qualité des données
[Termes IGN] système à base de connaissances
[Termes IGN] zone urbaineRésumé : (Auteur) Quality assessment of training samples collected from heterogeneous sources has received little attention in the existing literature. Inspired by Euclidean spectral distance metrics, this article derives three quality measures for modeling uncertainty in spectral information of open-source heterogeneous training samples for classification with Landsat imagery. We prepared eight test case data sets from volunteered geographic information and open government data sources to assess the proposed measures. The data sets have significant variations in quality, quantity, and data type. A correlation analysis verifies that the proposed measures can successfully rank the quality of heterogeneous training data sets prior to the image classification task. In this era of big data, pre-classification quality assessment measures empower research scientists to select suitable data sets for classification tasks from available open data sources. Research findings prove the versatility of the Euclidean spectral distance function to develop quality metrics for assessing open-source training data sets with varying characteristics for urban area classification. Numéro de notice : A2021-366 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.5.339 Date de publication en ligne : 01/05/2021 En ligne : https://doi.org/10.14358/PERS.87.5.339 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97695
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 5 (May 2021) . - pp 339-348[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021051 SL Revue Centre de documentation Revues en salle Disponible