Plos one . vol 15 n° 5Paru le : 01/05/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMethod for extraction of airborne LiDAR point cloud buildings based on segmentation / Maohua Liu in Plos one, vol 15 n° 5 (May 2020)
[article]
Titre : Method for extraction of airborne LiDAR point cloud buildings based on segmentation Type de document : Article/Communication Auteurs : Maohua Liu, Auteur ; Yue Shao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 0232778 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bati
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] segmentationRésumé : (auteur) The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes a building point cloud extraction method based on the combination of the Point Cloud Library (PCL) region growth segmentation and the histogram. The filtered LiDAR point cloud is segmented by using the PCL region growth method, and then the local normal vector and direction cosine are calculated for each cluster after segmentation. Finally, the histogram is generated to effectively separate the building point cloud from the non-building.Two sets of airborne LiDAR data in the south and west parts of Tokushima, Japan, are used to test the feasibility of the proposed method. The results are compared with those of the commercial software TerraSolid and the K-means algorithm. Results show that the proposed extraction algorithm has lower type I and II errors and better extraction effect than that of the TerraSolid and the K-means algorithm. Numéro de notice : A2020-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1371/journal.pone.0232778 Date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1371/journal.pone.0232778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97666
in Plos one > vol 15 n° 5 (May 2020) . - n° 0232778[article]Mangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system / Minh Hai Pham in Plos one, vol 15 n° 5 (May 2020)
[article]
Titre : Mangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system Type de document : Article/Communication Auteurs : Minh Hai Pham, Auteur ; Thi Hoai Do, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 0233110 Note générale : biblographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Sentinel-SAR
[Termes IGN] image SPOT 6
[Termes IGN] Inférence floue
[Termes IGN] mangrove
[Termes IGN] Viet Nam
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Background : Advances in earth observation and machine learning techniques have created new options for forest monitoring, primarily because of the various possibilities that they provide for classifying forest cover and estimating aboveground biomass (AGB).
Methods : This study aimed to introduce a novel model that incorporates the atom search algorithm (ASO) and adaptive neuro-fuzzy inference system (ANFIS) into mangrove forest classification and AGB estimation. The Ca Mau coastal area was selected as a case study since it has been considered the most preserved mangrove forest area in Vietnam and is being investigated for the impacts of land-use change on forest quality. The model was trained and validated with a set of Sentinel-1A imagery with VH and VV polarizations, and multispectral information from the SPOT image. In addition, feature selection was also carried out to choose the optimal combination of predictor variables. The model performance was benchmarked against conventional methods, such as support vector regression, multilayer perceptron, random subspace, and random forest, by using statistical indicators, namely, root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2).
Results : The results showed that all three indicators of the proposed model were statistically better than those from the benchmarked methods. Specifically, the hybrid model ended up at RMSE = 70.882, MAE = 55.458, R2 = 0.577 for AGB estimation.
Conclusion : From the experiments, such hybrid integration can be recommended for use as an alternative solution for biomass estimation. In a broader context, the fast growth of metaheuristic search algorithms has created new scientifically sound solutions for better analysis of forest cover.Numéro de notice : A2020-833 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article DOI : https://doi.org/10.1371/journal.pone.0233110 Date de publication en ligne : 21/05/2020 En ligne : https://doi.org/10.1371/journal.pone.0233110 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97667
in Plos one > vol 15 n° 5 (May 2020) . - n° 0233110[article]Assessing alternative methods for unsupervised segmentation of urban vegetation in very high-resolution multispectral aerial imagery / Allison Lassiter in Plos one, vol 15 n° 5 (May 2020)
[article]
Titre : Assessing alternative methods for unsupervised segmentation of urban vegetation in very high-resolution multispectral aerial imagery Type de document : Article/Communication Auteurs : Allison Lassiter, Auteur ; Mayank Darbari, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre urbain
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal
[Termes IGN] forêt urbaine
[Termes IGN] image aérienne
[Termes IGN] image multibande
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] segmentation d'imageRésumé : (auteur) To analyze types and patterns of greening trends across a city, this study seeks to identify a method of creating very high-resolution urban vegetation maps that scales over space and time. Vegetation poses unique challenges for image segmentation because it is patchy, has ragged boundaries, and high in-class heterogeneity. Existing and emerging public datasets with the spatial resolution necessary to identify granular urban vegetation lack a depth of affordable and accessible labeled training data, making unsupervised segmentation desirable. This study evaluates three unsupervised methods of segmenting urban vegetation: clustering with k-means using k-means++ seeding; clustering with a Gaussian Mixture Model (GMM); and an unsupervised, backpropagating convolutional neural network (CNN) with simple iterative linear clustering superpixels. When benchmarked against internal validity metrics and hand-coded data, k-means is more accurate than GMM and CNN in segmenting urban vegetation. K-means is not able to differentiate between water and shadows, however, and when this segment is important GMM is best for probabilistically identifying secondary land cover class membership. Though we find the unsupervised CNN shows high degrees of accuracy on built urban landscape features, its accuracy when segmenting vegetation does not justify its complexity. Despite limitations, for segmenting urban vegetation, k-means has the highest performance, is the simplest, and is more efficient than alternatives. Numéro de notice : A2020-834 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1371/journal.pone.0230856 Date de publication en ligne : 07/05/2020 En ligne : https://doi.org/10.1371/journal.pone.0230856 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97668
in Plos one > vol 15 n° 5 (May 2020)[article]