Descripteur
Documents disponibles dans cette catégorie (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Simulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model / Mingwei Liu in Computers, Environment and Urban Systems, vol 91 (January 2022)
[article]
Titre : Simulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model Type de document : Article/Communication Auteurs : Mingwei Liu, Auteur ; Tinggui Chen, Auteur ; Chiaki Matunaga, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101725 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] cycliste
[Termes IGN] direction
[Termes IGN] interaction spatiale
[Termes IGN] modèle de dispersion
[Termes IGN] modèle orienté agent
[Termes IGN] navigation pédestre
[Termes IGN] piéton
[Termes IGN] sécurité
[Termes IGN] vitesse
[Termes IGN] zone urbaineRésumé : (auteur) As the number of bicyclists in urban areas continues to increase, the need to realistically model the movement and interactions of bicyclists in mixed urban traffic is rapidly gaining importance. Therefore, this paper presents an agent space model (ASM) to elucidate the movements of bicyclists and pedestrians on shared roads. The ASM model, via simulation, particularly illustrates the dispersion phenomenon observed for non-motorized road users. The mutual interactions and diverse bicyclist and pedestrian properties were also incorporated into this model. The mutual interactions were realised through agent spaces of different sizes in conflict and overtaking behaviours for the following combinations: bicyclist-to-pedestrian, bicyclist-to-bicyclist, pedestrian-to-bicyclist, and pedestrian-to-pedestrian, which were obtained through experiments. The hypothesis test indicated that different agent spaces exist for different types of interactions. The experimental data were used to obtain several variables that describe the elements of road user agent spaces, including longitudinal and lateral distances and the dynamic relationship between the longitudinal distance and speed. The simulation results indicated that with an increase in the number of pedestrians, the maximum capacity decreased and the dispersion degree increased. The following psychological and physiological factors affect the degree of dispersion of bicyclists: travelling speed, reaction time, intensity, probability of selecting the head-on direction, and probability of selecting the right-hand direction. In addition, lane formation was observed in all simulations. The results also demonstrated that dedicated bicycle lanes will significantly reduce the dispersion degree. Moreover, the safety and efficiency effects of different forms of bicycle lanes were analysed from the perspective of the degree of dispersion. The simulation results can provide specific guidelines for understanding the causes of phenomena such as dispersion and lane formation, as well as for studying the traffic dynamics, effects of dedicated bicycle lanes, and macroscopic characteristics according to different bicyclist-pedestrian ratios. Numéro de notice : A2021-826 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101725 Date de publication en ligne : 20/10/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101725 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98947
in Computers, Environment and Urban Systems > vol 91 (January 2022) . - n° 101725[article]Towards generating network of bikeways from Mapillary data / Xuan Ding in Computers, Environment and Urban Systems, vol 88 (July 2021)
[article]
Titre : Towards generating network of bikeways from Mapillary data Type de document : Article/Communication Auteurs : Xuan Ding, Auteur ; Hongchao Fan, Auteur ; Jianya Gong, Auteur Année de publication : 2021 Article en page(s) : n° 101632 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] cycliste
[Termes IGN] données localisées des bénévoles
[Termes IGN] gestion des itinéraires
[Termes IGN] Mapillary
[Termes IGN] OpenStreetMap
[Termes IGN] Suède
[Termes IGN] système d'information géographiqueRésumé : (auteur) Nowadays, biking is flourishing in many Western cities. While many roads are used for both cars and bicycles, buffered bike lanes are marked for the safety of cyclists. In many cities, segregated paths are built up to have physical separation from motor vehicles. These types of biking ways are regarded as attributes in geographic information system (GIS) data. This information is required and important in the service of route planning, as cyclists may prefer certain types of bikeways. This paper presents a framework for generating networks of bikeways with attribute information from the data collected on the collaborative street view data platform Mapillary. The framework consists of two layers: The first layer focuses on constructing a bikeway road network using Global Positioning System (GPS) information of Mapillary images. Mapillary sequences are classified into walking, cycling, driving (ordinary road), and driving (motorway) trajectories based on the transportation mode with a trained XGBoost classifier. The bikeway road network is then extracted from cycling and driving (ordinary road) trajectories using a raster-based method. The second layer focuses on extracting attribute information from Mapillary images. Cycling-specific information (i.e., bicycle signs/markings) is extracted using a two-stage detection and classification model. A series of quantitative evaluations based on a case study demonstrated the ability and potential of the framework for extracting bikeway road information to enrich the existing OSM cycling road data. Numéro de notice : A2021-432 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101632 Date de publication en ligne : 17/04/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101632 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97798
in Computers, Environment and Urban Systems > vol 88 (July 2021) . - n° 101632[article]
Titre : Map matching for semi-restricted trajectories Type de document : Article/Communication Auteurs : Timon Behr, Auteur ; Thomas van Dijk, Auteur ; Axel Forsch, Auteur ; Jan‐Henrik Haunert, Auteur ; Sabine Storandt, Auteur Editeur : Leibniz [Allemagne] : Schloss Dagstuhl – Leibniz-Zentrum für Informatik Année de publication : 2021 Conférence : GIScience 2021, 11th International Conference on Geographic Information Science 27/09/2021 30/09/2021 Poznań Pologne Open Access Proceedings Importance : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement de cartes
[Termes IGN] cycliste
[Termes IGN] information sémantique
[Termes IGN] OpenStreetMap
[Termes IGN] piéton
[Termes IGN] positionnement par GPS
[Termes IGN] réseau routier
[Termes IGN] trajet (mobilité)Résumé : (auteur) We consider the problem of matching trajectories to a road map, giving particular consideration to trajectories that do not exclusively follow the underlying network. Such trajectories arise, for example, when a person walks through the inner part of a city, crossing market squares or parking lots. We call such trajectories semi-restricted. Sensible map matching of semi-restricted trajectories requires the ability to differentiate between restricted and unrestricted movement. We develop in this paper an approach that efficiently and reliably computes concise representations of such trajectories that maintain their semantic characteristics. Our approach utilizes OpenStreetMap data to not only extract the network but also areas that allow for free movement (as e.g. parks) as well as obstacles (as e.g. buildings). We discuss in detail how to incorporate this information in the map matching process, and demonstrate the applicability of our method in an experimental evaluation on real pedestrian and bicycle trajectories. Numéro de notice : C2021-081 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Communication DOI : 10.4230/LIPIcs.GIScience.2021.II.12 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.4230/LIPIcs.GIScience.2021.II.12 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100939
Titre : Exact optimization algorithms for the aggregation of spatial data Type de document : Thèse/HDR Auteurs : Johannes Oehrlein, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2020 Collection : DGK - C, ISSN 0065-5325 num. 862 Importance : 184 p. Format : 21 x 30 cm Note générale : bibliographie
Dissertation zur Erlangung des GradesDoktor-Ingenieur (Dr.-Ing.)
Diese Arbeit ist gleichzeitig als elektronische Dissertationbei der Universitäts-und Landesbibliothek Bonn veröffentlichtLangues : Anglais (eng) Descripteur : [Termes IGN] agrégation spatiale
[Termes IGN] cycliste
[Termes IGN] données localisées
[Termes IGN] espace vert
[Termes IGN] généralisation automatique de données
[Termes IGN] programmation linéaire
[Termes IGN] réseau routier
[Termes IGN] trajet (mobilité)
[Termes IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The aggregation of spatial data is a recurring problem in geoinformation science. Aggregating data means subsuming multiple pieces of information into a less complex representation. It is pursued for various reasons, like having a less complex data structure to apply further processing algorithms or a simpler visual representation as targeted in map generalization. In this thesis, we identify aggregation problems dealing with spatial data and formalize themas optimization problems. That means we set up a function that is capable of evaluating valid solutions to the considered problem, like a cost function for minimization problems. To each problem introduced, we present an algorithm that finds a valid solution that optimizes this objective function. In general, this superiority with respect to the quality of the solution comes at the cost of computation efficiency, a reason why non-exact approaches like heuristics are widely used for optimization. Nevertheless, the higher quality of solutions yielded by exact approaches is undoubtedly important. On the one hand, “good” solutions are sometimes not sufficient. On the other hand, exact approaches yield solutions that maybe used as benchmarks for the evaluation of non-exact approaches. This kind of application is of particular interest since heuristic approaches, for example, give no guarantee on the quality of solutions found. Furthermore, algorithms that provide exact solutions to optimization problems reveal weak spots of underlying models. A result that does not satisfy the user cannot be excused with a mediocre performance of an applied heuristic. With this motivation, we developed several exact approaches for aggregation problems, which we present in this thesis. Since we deal with spatial data, for all problems considered, the aggregation is based on both geometric and semantic aspects although the focus varies. The first problem we discuss is about visualizing a road network in the context of navigation. Given a fixed location in the network, we aim for a clear representation of the surroundings. For this purpose, we introduce an equivalence relation for destinations in the network based on which we perform the aggregation. We succeed in designing an efficient algorithm that aggregates as many equivalent destinations as possible. Furthermore, we tackle a class of similar and frequently discussed problems concerning the aggregation of areal units into larger, connected regions. Since these problems are NP-complete, i.e. extraordinarily complex, we do not aim for an efficient exact algorithm (which is suspected not to exist) but present a strong improvement to existing exact approaches. In another setup, we present an efficient algorithm for the analysis of urban green-space supply. Performing a hypothetical assignment of citizens to available green spaces, it detects local shortages and patterns in the accessibility of green space within a city. Finally, we introduce and demonstrate a tool for detecting route preferences of cyclists based on a selection of given trajectories. Examining a set of criteria forming suitable candidates, we aggregate them efficiently to the best-fitting derivable criterion. Overall, we present exact approaches to various aggregation problems. In particular, the NP-complete problem we deal with firmly underscores, as expected, the need for heuristic approaches. For applications asking for an immediate solution, it may be reasonable to apply a heuristic approach. This holds in particular due to easy and generally applicable meta-heuristics being available. However, with this thesis, we argue for applying exact approaches if possible. The guaranteed superior quality of solutions speaks for itself. Besides, we give additional examples which show that exact approaches can be applied efficiently as well. Numéro de notice : 17681 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Thèse étrangère Note de thèse : PhD dissertation : : Rheinische Friedrich-Wilhelms-Universität Bonn : 2020 En ligne : https://nbn-resolving.org/urn:nbn:de:hbz:5-60713 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98023
Titre : Spatial big data, BIM and advanced GIS for smart transformation Type de document : Monographie Auteurs : Sara Shirowzhan, Éditeur scientifique ; Willie Tan, Éditeur scientifique ; Samad R.E. Sepasgozar, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 166 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-03936-031-4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification barycentrique
[Termes IGN] cycliste
[Termes IGN] données massives
[Termes IGN] modèle orienté agent
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] optimisation (mathématiques)
[Termes IGN] planification urbaine
[Termes IGN] réseau ferroviaire
[Termes IGN] réseau routier
[Termes IGN] secours d'urgence
[Termes IGN] système d'information géographique
[Termes IGN] téléphone intelligent
[Termes IGN] trafic routier
[Termes IGN] ville intelligenteRésumé : (éditeur) This book covers a range of topics including selective technologies and algorithms that can potentially contribute to developing an intelligent environment and smarter cities. While the connectivity and efficiency of smart cities is important, the analysis of the impact of construction development and large projects in the city is crucial to decision and policy makers, before the project is approved. This book also presents an agenda for future investigations to address the need for advanced tools such as mobile scanners, Geospatial Artificial Intelligence, Unmanned Aerial Vehicles, Geospatial Augmented Reality apps, Light Detection, and Ranging in smart cities. Some of selected specific tools presented in this book are as a simulator for improving the smart parking practices by modelling drivers with activity plans, a bike optimization algorithm to increase the efficiency of bike stations, an agent-based model simulation of human mobility with the use of mobile phone datasets. In addition, this book describes the use of numerical methods to match the network demand and supply of bicycles, investigate the distribution of railways using different indicators, presents a novel algorithm of direction-aware continuous moving K-nearest neighbor queries in road networks, and presents an efficient staged evacuation planning algorithm for multi-exit buildings. Note de contenu : 1- Digital twin and cyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities
2- An efficient staged evacuation planning algorithm applied to multi-exit buildings
3- A hybrid framework for high-performance modeling of three-dimensional pipe networks
4- Direction-aware continuous moving K-nearest-neighbor query in road networks
5- The distribution pattern of the railway network in China at the county level
6- Data-driven bicycle network analysis based on traditional counting methods and GPS traces from smartphone
7- An agent-based model simulation of human mobility based on mobile phone data: How commuting relates to congestion
8- Heuristic bike optimization algorithm to improve usage efficiency of the station-free bike sharing system in Shenzhen, China
9- An occupancy simulator for a smart parking system: Developmental design and experimental considerationsNuméro de notice : 28440 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03936-031-4 En ligne : https://doi.org/10.3390/books978-3-03936-031-4 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98877 Extracting spatial patterns in bicycle routes from crowdsourced data / Jody Sultan in Transactions in GIS, vol 21 n° 6 (December 2017)PermalinkCrowdsourcing a cyclist perspective on suggested recreational paths in real-world networks / Kevin Baker in Cartography and Geographic Information Science, Vol 44 n° 5 (September 2017)PermalinkAllier analyse géographique et expertise locale dans un SIG pour une stratégie territoriale de sécurité routière / Eliane Propeck-Zimmermann in Revue internationale de géomatique, vol 26 n° 2 (avril - juin 2016)PermalinkStudying commuting behaviours using collaborative visual analytics / Roger Beecham in Computers, Environment and Urban Systems, vol 47 (September 2014)Permalink