Remote sensing . vol 13 n° 9Paru le : 01/05/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLifting scheme-based sparse density feature extraction for remote sensing target detection / Ling Tian in Remote sensing, vol 13 n° 9 (May-1 2021)
[article]
Titre : Lifting scheme-based sparse density feature extraction for remote sensing target detection Type de document : Article/Communication Auteurs : Ling Tian, Auteur ; Yu Cao, Auteur ; Zishan Shi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1862 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de cible
[Termes IGN] données clairsemées
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] transformation en ondelettesRésumé : (auteur) The design of backbones is of great significance for enhancing the location and classification precision in the remote sensing target detection task. Recently, various approaches have been proposed on altering the feature extraction density in the backbones to enlarge the receptive field, make features prominent, and reduce computational complexity, such as dilated convolution and deformable convolution. Among them, one of the most widely used methods is strided convolution, but it loses the information about adjacent feature points which leads to the omission of some useful features and the decrease of detection precision. This paper proposes a novel sparse density feature extraction method based on the relationship between the lifting scheme and convolution, which improves the detection precision while keeping the computational complexity almost the same as the strided convolution. Experimental results on remote sensing target detection indicate that our proposed method improves both detection performance and network efficiency. Numéro de notice : A2021-405 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13091862 Date de publication en ligne : 10/05/2021 En ligne : https://doi.org/10.3390/rs13091862 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97720
in Remote sensing > vol 13 n° 9 (May-1 2021) . - n° 1862[article]SNR-based water height retrieval in rivers: Application to high amplitude asymmetric tides in the Garonne river / Pierre Zeiger in Remote sensing, vol 13 n° 9 (May-1 2021)
[article]
Titre : SNR-based water height retrieval in rivers: Application to high amplitude asymmetric tides in the Garonne river Type de document : Article/Communication Auteurs : Pierre Zeiger, Auteur ; Frédéric Frappart, Auteur ; José Darrozes, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1856 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] crue
[Termes IGN] filtrage du bruit
[Termes IGN] Garonne (bassin)
[Termes IGN] interférence
[Termes IGN] marée océanique
[Termes IGN] modèle d'inversion
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] série temporelle
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Signal-to-noise ratio (SNR) time series acquired by a geodetic antenna were analyzed to retrieve water heights during asymmetric tides on a narrow river using the Interference Pattern Technique (IPT) from Global Navigation Satellite System Reflectometry (GNSS-R). The dynamic SNR method was selected because the elevation rate of the reflecting surface during rising tides is high in the Garonne River with macro tidal conditions. A new process was developed to filter out the noise introduced by the environmental conditions on the reflected signal due to the narrowness of the river compared to the size of the Fresnel areas, the presence of vegetation on the river banks, and the presence of boats causing multiple reflections. This process involved the removal of multipeaks in the Lomb-Scargle Periodogram (LSP) output and an iterative least square estimation (LSE) of the output heights. Evaluation of the results was performed against pressure-derived water heights. The best results were obtained using all GNSS bands (L1, L2, and L5) simultaneously: R = 0.99, ubRMSD = 0.31 m. We showed that the quality of the retrieved heights was consistent, whatever the vertical velocity of the reflecting surface, and was highly dependent on the number of satellites visible. The sampling period of our solution was 1 min with a 5-min moving window, and no tide models or fit were used in the inversion process. This highlights the potential of the dynamic SNR method to detect and monitor extreme events with GNSS-R, including those affecting inland waters such as flash floods. Numéro de notice : A2021-406 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs13091856 Date de publication en ligne : 10/05/2021 En ligne : https://doi.org/10.3390/rs13091856 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97722
in Remote sensing > vol 13 n° 9 (May-1 2021) . - n° 1856[article]Evaluation of light pollution in global protected areas from 1992 to 2018 / Haowei Mu in Remote sensing, vol 13 n° 9 (May-1 2021)
[article]
Titre : Evaluation of light pollution in global protected areas from 1992 to 2018 Type de document : Article/Communication Auteurs : Haowei Mu, Auteur ; Xuecao Li, Auteur ; Xiaoping Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1849 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aire protégée
[Termes IGN] biodiversité
[Termes IGN] carte thématique
[Termes IGN] distribution spatiale
[Termes IGN] image DMSP-OLS
[Termes IGN] image NPP-VIIRS
[Termes IGN] nuit
[Termes IGN] politique de conservation (biodiversité)
[Termes IGN] pollution lumineuse
[Termes IGN] série temporelle
[Termes IGN] urbanisationRésumé : (auteur) Light pollution, a phenomenon in which artificial nighttime light (NTL) changes the form of brightness and darkness in natural areas such as protected areas (PAs), has become a global concern due to its threat to global biodiversity. With ongoing global urbanization and climate change, the light pollution status in global PAs deserves attention for mitigation and adaptation. In this study, we developed a framework to evaluate the light pollution status in global PAs, using the global NTL time series data. First, we classified global PAs (30,624) into three pollution categories: non-polluted (5974), continuously polluted (8141), and discontinuously polluted (16,509), according to the time of occurrence of lit pixels in/around PAs from 1992 to 2018. Then, we explored the NTL intensity (e.g., digital numbers) and its trend in those polluted PAs and identified those hotspots of PAs at the global scale with consideration of global urbanization. Our study shows that global light pollution is mainly distributed within the range of 30°N and 60°N, including Europe, north America, and East Asia. Although the temporal trend of NTL intensity in global PAs is increasing, Japan and the United States of America (USA) have opposite trends due to the implementation of well-planned ecological conservation policies and declining population growth. For most polluted PAs, the lit pixels are close to their boundaries (i.e., less than 10 km), and the NTL in/around these lit areas has become stronger over the past decades. The identified hotspots of PAs (e.g., Europe, the USA, and East Asia) help support decisions on global biodiversity conservation, particularly with global urbanization and climate change. Numéro de notice : A2021-407 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/rs13091849 Date de publication en ligne : 09/05/2021 En ligne : https://doi.org/10.3390/rs13091849 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97723
in Remote sensing > vol 13 n° 9 (May-1 2021) . - n° 1849[article]