ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 177Paru le : 01/07/2021 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021071 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021073 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2021072 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierA hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases / Chun Yang in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases Type de document : Article/Communication Auteurs : Chun Yang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 38 - 56 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] Allemagne
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] classification automatique d'objets
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] jointure
[Termes IGN] objet géographique
[Termes IGN] occupation du sol
[Termes IGN] optimisation (mathématiques)
[Termes IGN] utilisation du solRésumé : (Auteur) Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics. Numéro de notice : A2021-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.022 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97774
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 38 - 56[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization / Jiali Han in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization Type de document : Article/Communication Auteurs : Jiali Han, Auteur ; Mengqi Rong, Auteur ; Hanqing Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 57 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] espace intérieur
[Termes IGN] maillage
[Termes IGN] programmation linéaire
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] vectorisationRésumé : (Auteur) Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and floor structures by Markov Random Field (MRF) labeling on the arrangement. Finally, the wall structures are modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. Merging the respective results yields the final model. The experimental results show that the proposed method could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data compared with other state-of-the-art approaches. Numéro de notice : A2021-371 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.019 Date de publication en ligne : 15/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97779
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 57 - 74[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Detecting high-temperature anomalies from Sentinel-2 MSI images / Yongxue Liu in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : Detecting high-temperature anomalies from Sentinel-2 MSI images Type de document : Article/Communication Auteurs : Yongxue Liu, Auteur ; Zhi Weifeng, Auteur ; Bihua Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 174 - 193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] anomalie thermique
[Termes IGN] éruption volcanique
[Termes IGN] image aérienne
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image thermique
[Termes IGN] incendie
[Termes IGN] réflectance spectrale
[Termes IGN] risque technologique
[Termes IGN] série temporelle
[Termes IGN] température au solRésumé : (Auteur) High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. Numéro de notice : A2021-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.05.008 Date de publication en ligne : 23/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.05.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97808
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 174 - 193[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt