IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 59 n° 6Paru le : 01/06/2021 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRetrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean Type de document : Article/Communication Auteurs : Kunpeng Sun, Auteur ; Tinglu Zhang, Auteur ; Shuguo Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4579 - 4589 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] atténuation
[Termes IGN] couleur de l'océan
[Termes IGN] image Aqua-MODIS
[Termes IGN] image NPP-VIIRS
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] rayonnement ultraviolet
[Termes IGN] régression multipleRésumé : (auteur) Underwater ultraviolet radiation (UVR), which plays a significant role in photobiological and photochemical processes, is one of the key factors in marine ecosystems. A new algorithm KpcaUV, based on kernel principal component analysis (KPCA) and multiple linear regression (MLR), was proposed in this study for the retrieval of the UVR diffuse attenuation coefficient Kd(λ) from remote sensing reflectance Rrs(λ) in the global ocean. KPCA can be applied in all areas that principal components analysis (PCA) can be used. More importantly, KPCA can help mapping data into high dimensions and reducing the nonlinearity between inputs and outputs, which will improve the performance and robustness of algorithms when deriving large dynamic ranges parameters. Compared with SeaUVc, which is one of the most successful Kd(λ) retrieval algorithms in UVR, the results showed that KpcaUV (with R2 : 0.970 and RMSE: 14.0%) performed similar to SeaUVc (with R2 : 0.963 and RMSE: 15.6%) when implemented with high-quality data. Nevertheless, KpcaUV was more robust and consistent than SeaUVc when implemented on the satellite images with different levels of quality control. The RMSD of SeaUVc had a significant reduction from 26.8% (QA ≥ 0.6) to 12.7% (QA = 1.0), and the RMSD of KpcaUV varied less than SeaUVc from 14.6% (QA ≥ 0.6) to 10.1% (QA = 1). Hence, considering its good nonlinear-problem-solving ability and robustness when applied to multiple satellites, KpcaUV proposed by this study can be used to obtain Kd(380) for the continuous observation of the large area. Numéro de notice : A2021-421 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020294 Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020294 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97773
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4579 - 4589[article]Adaptive regularization method for 3-D GNSS ionospheric tomography based on the U-curve / Jun Tang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Adaptive regularization method for 3-D GNSS ionospheric tomography based on the U-curve Type de document : Article/Communication Auteurs : Jun Tang, Auteur ; Xin Gao, Auteur Année de publication : 2021 Article en page(s) : pp 4547 - 4560 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données GNSS
[Termes IGN] modèle ionosphérique
[Termes IGN] problème inverse
[Termes IGN] teneur totale en électrons
[Termes IGN] tomographie par GPSRésumé : (auteur) Computerized ionospheric tomography is a highly ill-posed inverse problem, and regularization tends to stabilize the problem to provide a unique solution. When a regularization method is used, the choice of an optimal parameter is a key issue. In this article, we propose an adaptive regularization method for 3-D ionospheric tomography based on the U-curve. The proposed approach uses a U-curve method to determine the optimal regularization parameter from Global Navigation Satellite Systems (GNSS) observation data. Comparative case studies are investigated based on GNSS simulated observations and real measurements. The simulation results indicate that the proposed method is superior to the adaptive regularization method based on the L-curve. In addition, we further validate the tomographic results with actual ionosonde station data. The results demonstrate the reliability and superiority of the proposed method compared to traditional methods. Numéro de notice : A2021-422 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3022561 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022561 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97777
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4547 - 4560[article]Model-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing / Michael L. Benson in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Model-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing Type de document : Article/Communication Auteurs : Michael L. Benson, Auteur ; Pierce Leland, Auteur ; Katleen Bergen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4635 - 4653 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] Canada
[Termes IGN] canopée
[Termes IGN] couvert forestier
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] Leaf Area Index
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] polarimétrie radar
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) One of the fundamental technical challenges of any new spaceborne vegetation remote sensing mission is the determination of what sensor(s) to place onboard and what, if any, overlapping modes of operation they will employ as each onboard sensor adds significant cost to the overall mission. In this article, the remote sensing of forest parameters using multimodal remote sensing is presented. In particular, polarimetric radar, Light Detection And Ranging (LiDAR), and near-IR passive optical sensing platforms are employed in conjunction with physics-based models. These models are used to accurately estimate forest aboveground biomass as well as canopy height in homogeneous areas. It is shown that this proposed method is capable of achieving high accuracy estimates while using minimal ancillary data in the estimation process. We present a method to combine measured data sets with our geometric and electromagnetic sensor models to develop a forest parameter estimation algorithm that fuses multimodal remote sensing technologies with a minimal amount of ground information and yields an accurate estimate of forest structure including dry biomass and canopy height with rms errors of 1.6 kg/m 2 and 1.68 m respectively. Numéro de notice : A2021-423 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3018638 Date de publication en ligne : 09/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97778
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4635 - 4653[article]PolSAR ship detection based on neighborhood polarimetric covariance matrix / Tao Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : PolSAR ship detection based on neighborhood polarimetric covariance matrix Type de document : Article/Communication Auteurs : Tao Liu, Auteur ; Ziyuan Yang, Auteur ; Armando Marino, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4874 - 4887 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] détection d'objet
[Termes IGN] données polarimétriques
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] matrice de covariance
[Termes IGN] navire
[Termes IGN] polarimétrie radar
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms. Numéro de notice : A2021-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3022181 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97780
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4874 - 4887[article]Multiscale cloud detection in remote sensing images using a dual convolutional neural network / Markku Luotamo in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Multiscale cloud detection in remote sensing images using a dual convolutional neural network Type de document : Article/Communication Auteurs : Markku Luotamo, Auteur ; Sari Metsämäki, Auteur ; Arto Klami, Auteur Année de publication : 2021 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection des nuages
[Termes IGN] granularité d'image
[Termes IGN] image Sentinel-MSI
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Semantic segmentation by convolutional neural networks (CNN) has advanced the state of the art in pixel-level classification of remote sensing images. However, processing large images typically requires analyzing the image in small patches, and hence, features that have a large spatial extent still cause challenges in tasks, such as cloud masking. To support a wider scale of spatial features while simultaneously reducing computational requirements for large satellite images, we propose an architecture of two cascaded CNN model components successively processing undersampled and full-resolution images. The first component distinguishes between patches in the inner cloud area from patches at the cloud’s boundary region. For the cloud-ambiguous edge patches requiring further segmentation, the framework then delegates computation to a fine-grained model component. We apply the architecture to a cloud detection data set of complete Sentinel-2 multispectral images, approximately annotated for minimal false negatives in a land-use application. On this specific task and data, we achieve a 16% relative improvement in pixel accuracy over a CNN baseline based on patching. Numéro de notice : A2021-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3015272 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3015272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97781
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp[article]Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification / Bobo Xi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification Type de document : Article/Communication Auteurs : Bobo Xi, Auteur ; Jiaojiao Li, Auteur ; Yunsong Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5114 - 5130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] segmentation multi-échelle
[Termes IGN] superpixelRésumé : (auteur) Recently, multiscale spatial features have been widely utilized to improve the hyperspectral image (HSI) classification performance. However, fixed-size neighborhood involving the contextual information probably leads to misclassifications, especially for the boundary pixels. Additionally, it has been demonstrated that deep neural network (DNN) is practical to extract representative features for the classification tasks. Nevertheless, under the condition of high dimensionality versus small sample sizes, DNN tends to be over-fitting and it is generally time-consuming due to the deep-level feature learning process. To alleviate the aforementioned issues, we propose a multiscale context-aware ensemble deep kernel extreme learning machine (MSC-EDKELM) for efficient HSI classification. First, the scene of the HSI data set is over-segmented in multiscale via using the adaptive superpixel segmentation technique. Second, superpixel pattern (SP) and attentional neighboring superpixel pattern (ANSP) are generated by leveraging the superpixel maps, which can automatically comprise local and global contextual information, respectively. Afterward, an ensemble deep kernel extreme learning machine (EDKELM) is presented to investigate the deep-level characteristics in the SP and ANSP. Finally, the category of each pixel is accurately determined by the decision fusion and weighted output layer fusion strategy. Experimental results on four real-world HSI data sets demonstrate that the proposed frameworks outperform some classic and state-of-the-art methods with high computational efficiency, which can be employed to serve real-time applications. Numéro de notice : A2021-426 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1109/TGRS.2020.3022029 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97782
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5114 - 5130[article]Domain adaptive transfer attack-based segmentation networks for building extraction from aerial images / Younghwan Na in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Domain adaptive transfer attack-based segmentation networks for building extraction from aerial images Type de document : Article/Communication Auteurs : Younghwan Na, Auteur ; Jun Hee Kim, Auteur ; Kyungsu Lee, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5171 - 5182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] entropie
[Termes IGN] image aérienne
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Semantic segmentation models based on convolutional neural networks (CNNs) have gained much attention in relation to remote sensing and have achieved remarkable performance for the extraction of buildings from high-resolution aerial images. However, the issue of limited generalization for unseen images remains. When there is a domain gap between the training and test data sets, the CNN-based segmentation models trained by a training data set fail to segment buildings for the test data set. In this article, we propose segmentation networks based on a domain adaptive transfer attack (DATA) scheme for building extraction from aerial images. The proposed system combines the domain transfer and the adversarial attack concepts. Based on the DATA scheme, the distribution of the input images can be shifted to that of the target images while turning images into adversarial examples against a target network. Defending adversarial examples adapted to the target domain can overcome the performance degradation due to the domain gap and increase the robustness of the segmentation model. Cross-data set experiments and ablation study are conducted for three different data sets: the Inria aerial image labeling data set, the Massachusetts building data set, and the WHU East Asia data set. Compared with the performance of the segmentation network without the DATA scheme, the proposed method shows improvements in the overall intersection over union (IoU). Moreover, it is verified that the proposed method outperforms even when compared with feature adaptation (FA) and output space adaptation (OSA). Numéro de notice : A2021-427 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3010055 Date de publication en ligne : 30/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3010055 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97783
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5171 - 5182[article]GNSS-based statistical analysis of ionospheric anomalies during typhoon landings in Taiwan/Japan / Hai Peng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : GNSS-based statistical analysis of ionospheric anomalies during typhoon landings in Taiwan/Japan Type de document : Article/Communication Auteurs : Hai Peng, Auteur ; Yibin Yao, Auteur ; Jian Kong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5272 - 5279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] cyclone
[Termes IGN] données GNSS
[Termes IGN] onde de gravité
[Termes IGN] perturbation ionosphérique
[Termes IGN] phase
[Termes IGN] propagation ionosphérique
[Termes IGN] signal GNSS
[Termes IGN] Taïwan
[Termes IGN] teneur totale en électrons
[Termes IGN] vitesseRésumé : (auteur) Using the Global Navigation Satellite System (GNSS) differenced total electron content (dTEC) series, the traveling ionosphere disturbances (TIDs) of 22 typhoons registered in Taiwan/Japan between 2013 and 2016 were studied. The horizontal speed of the first TID during a typhoon landing can be estimated by a two-station method with the ionosphere anomaly indicator in total electron count units (TECUs) (|dTEC| ≥ 0.15 TECU). The horizontal speed of the TIDs was from 155 to 210 m/s and with an average speed of 168.70 m/s. The estimated TID speeds of Typhoons Soudelor (205.93 m/s) and Megi (158.47 m/s) are not consistent with each other, even though they had very similar trajectories when cross through Taiwan Island. Moreover, the propagation velocity of the typhoon ionospheric anomaly showed a significant positive correlation ( r=0.78 , α=0.05 ) with the change rate of the typhoon central air pressure and a negative correlation ( r=−0.52 , α=0.05 ) with the central pressure before landing. Gravity waves were generated by land friction, terrain blocking, and strong wind shear transport energy into the atmosphere from the near surface to the mesosphere and thermosphere, which is the main cause of ionosphere disturbances during typhoon landing. Numéro de notice : A2021-428 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3004829 Date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3004829 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97784
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5272 - 5279[article]