[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGroundwater vulnerability assessment of the chalk aquifer in the northern part of France / Lahcen Zouhri in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Groundwater vulnerability assessment of the chalk aquifer in the northern part of France Type de document : Article/Communication Auteurs : Lahcen Zouhri, Auteur ; Romain Armand, Auteur Année de publication : 2021 Article en page(s) : pp 1193 - 1216 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] aquifère
[Termes IGN] ArcGIS
[Termes IGN] carte hydrogéologique
[Termes IGN] craie
[Termes IGN] eau souterraine
[Termes IGN] Hauts-de-France (région 2016)
[Termes IGN] Oise (60)
[Termes IGN] utilisation du sol
[Termes IGN] vulnérabilitéRésumé : (auteur) This study explores the groundwater vulnerability of the chalk aquifer (northern part of France) using a well-known overlay and index DRASTIC method for intrinsic scenario and using land use (LU) parameter as additional factor. Different sources have allowed to compile data necessary to map the vulnerability of the aquifer under study, which used to generate the seven parameters of DRASTIC, namely: groundwater Depth, groundwater Recharge, lithology, Soil media, Topography, Impact of the vadose zone and hydraulic Conductivity. Applying the model in ArcGIS 10.2 platform leads to identify three classes of vulnerability: low, medium and high vulnerability. The highest DRASTIC indexes appear in areas where the groundwater depth is low and in more permeable unsaturated zones. The LU has a little effect on the distribution of vulnerability classes: this distribution is marked by the low vulnerability 44% against 6.5 of high vulnerability. Numéro de notice : A2021-434 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637465 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97801
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1193 - 1216[article]Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1217 - 1235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification bayesienne
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] fond marin
[Termes IGN] Google Earth
[Termes IGN] habitat d'espèce
[Termes IGN] image Quickbird
[Termes IGN] Malaisie
[Termes IGN] précision infrapixellaire
[Termes IGN] récif corallienRésumé : (auteur) This study deals with the mixed-pixel problem of detecting benthic habitat class membership and evaluates two soft classifiers for coral habitat mapping on Lang Tengah island (Malaysia). A comparison was made between the Bayesian and Dempster–Shafer (D–S) with a traditional maximum likelihood (ML). The heterogeneous pattern of reef environment, established by field observation, four classes of coral habitats containing various combinations of live coral, dead coral with algae, rubble coral and sand. Posterior probability and belief maps, generated by Bayesian and D–S, respectively, were evaluated by visual inspection and final coral habitat distribution maps were validated via accuracy assessment estimates. The accuracy validation tests agreed with the visual inspection of the probability, uncertainty and coral distribution maps. The Bayesian algorithm performed better, with a 34.7–68.5% improvement in accuracy compared to D–S and ML, respectively. Probability maps demonstrate the advantages of the soft classifier over the hard classifier for coral mapping. Numéro de notice : A2021-435 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637466 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97803
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1217 - 1235[article]A framework for classification of volunteered geographic data based on user’s need / Nazila Mohammadi in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : A framework for classification of volunteered geographic data based on user’s need Type de document : Article/Communication Auteurs : Nazila Mohammadi, Auteur ; Amin Sedaghat, Auteur Année de publication : 2021 Article en page(s) : pp 1276 - 1291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse en composantes principales
[Termes IGN] approche participative
[Termes IGN] classification par réseau neuronal
[Termes IGN] données localisées des bénévoles
[Termes IGN] indicateur de qualité
[Termes IGN] OpenStreetMap
[Termes IGN] Perceptron multicouche
[Termes IGN] qualité des données
[Termes IGN] zone urbaineRésumé : (auteur) VGI is an attractive source of data, but the quality assurance limits its usages. This study proposes a framework to estimate the quality of the VGI and to classify them based on the user’s need. For this purpose, a set of properties is defined to describe the data in various aspects. The principal component analysis (PCA) method is applied to reach a new set of uncorrelated indicators (UI). Volunteered data is classified based on the user’s need and takes a quality index (QI). UI and QI values are used to train the ANN. Finally, the trained ANN determines the output of the network in a way that returns QI using the UI as inputs. The proposed method was applied to estimate the quality classes of VGI in a part of an urban area. According to the results of the confusion matrix, the total accuracy of the proposed framework was 81.6%. Numéro de notice : A2021-436 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1641562 Date de publication en ligne : 16/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1641562 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97806
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1276 - 1291[article]