Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 87 n° 6Paru le : 01/06/2021 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2021061 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierResolution enhancement for large-scale land cover mapping via weakly supervised deep learning / Qiutong Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : Resolution enhancement for large-scale land cover mapping via weakly supervised deep learning Type de document : Article/Communication Auteurs : Qiutong Yu, Auteur ; Wei Liu, Auteur ; Wesley Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 405 - 412 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] série temporelleRésumé : (Auteur) Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover globally. However, the consistency of land cover monitoring is limited by the spatial and temporal resolutions of the acquired satellite images. The public availability of daily high-resolution images is still scarce. This paper aims to fill this gap by proposing a novel spatiotemporal fusion method to enhance daily low spatial resolution land cover mapping using a weakly supervised deep convolutional neural network. We merge Sentinel images and moderate resolution imaging spectroradiometer (MODIS )-derived thematic land cover maps under the application background of massive remote sensing data and the large spatial resolution gaps between MODIS data and Sentinel images. The neural network training was conducted on the public data set SEN12MS, while the validation and testing used ground truth data from the 2020 IEEE Geoscience and Remote Sensing Society data fusion contest. The proposed data fusion method shows that the synthesized land cover map has significantly higher spatial resolution than the corresponding MODIS-derived land cover map. The ensemble approach can be implemented for generating high-resolution time series of satellite images by fusing fine images from Sentinel-1 and -2 and daily coarse images from MODIS. Numéro de notice : A2021-373 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.6.405 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.6.405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97825
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 405 - 412[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible A high-resolution satellite DEM filtering method assisted with building segmentation / Yihui Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : A high-resolution satellite DEM filtering method assisted with building segmentation Type de document : Article/Communication Auteurs : Yihui Li, Auteur ; Fang Gao, Auteur ; Wentao Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 421 - 430 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] filtrage numérique d'image
[Termes IGN] filtre adaptatif
[Termes IGN] image à haute résolution
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle numérique de surface
[Termes IGN] orthoimage
[Termes IGN] point d'appui
[Termes IGN] segmentation d'imageRésumé : (Auteur) Digital elevation model (DEM) filtering is critical in DEM production, and large-area meter-level resolution DEM is mainly generated from high-resolution satellite images. However, the current DEM filtering methods are mostly aimed at laser scanning data and tend to excessively remove ground points when processing a satellite digital surface model (DSM). To accurately filter out buildings and preserve terrain, we propose a DEM filtering algorithm using building segmentation results of orthophoto. Based on morphological filtering, our method estimates the probability of being a built-up area or mountains for DSM, and according to this probability the filtering parameters are adaptively adjusted. For robustness, our method performs the above filtering operation on DSM through a sliding-window approach, and finally the nonground points are determined by the votes of multiple filtering. Experiments against six representative data sets have shown that our method achieved superior performance than classical algorithms and commercial software. Numéro de notice : A2021-374 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.6.421 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.6.421 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97827
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 421 - 430[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible An incremental isomap method for hyperspectral dimensionality reduction and classification / Yi Ma in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : An incremental isomap method for hyperspectral dimensionality reduction and classification Type de document : Article/Communication Auteurs : Yi Ma, Auteur ; Zezhong Zheng, Auteur ; Yutang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 445 - 455 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] classification barycentrique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] échantillonnage de données
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] squelettisation
[Termes IGN] utilisation du solRésumé : (Auteur) Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We present in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature variation algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine. Numéro de notice : A2021-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.7.445 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.7.445 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97829
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 445 - 455[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible