Remote sensing . vol 13 n° 11Paru le : 01/06/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierFractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method / Duanyang Liu in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method Type de document : Article/Communication Auteurs : Duanyang Liu, Auteur ; Kun Jia, Auteur ; Haiying jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] image Feng-Yun
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance végétale
[Termes IGN] régressionRésumé : (auteur) As an important land surface vegetation parameter, fractional vegetation cover (FVC) has been widely used in many Earth system ecological and climate models. In particular, high-quality and reliable FVC products on the global scale are important for the Earth surface process simulation and global change studies. Recently, the FengYun-3 (FY-3) series satellites, which are the second generation of Chinese meteorological satellites, launched with the polar orbit and provide continuous land surface observations on a global scale. However, there is rare studying on the FVC estimation using FY-3 reflectance data. Therefore, the FY-3B reflectance data were selected as the representative data to develop a FVC estimation algorithm in this study, which would investigate the capability of the FY-3 reflectance data on the global FVC estimation. The spatial–temporal validation over the regional area indicated that the FVC estimations generated by the proposed algorithm had reliable continuities. Furthermore, a satisfactory accuracy performance (R2 = 0.7336, RMSE = 0.1288) was achieved for the proposed algorithm based on the Earth Observation LABoratory (EOLAB) reference FVC data, which provided further evidence on the reliability and robustness of the proposed algorithm. All these results indicated that the FY-3 reflectance data were capable of generating a FVC estimation with reliable spatial–temporal continuities and accuracy. Numéro de notice : A2021-439 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112165 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97824
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2165[article]Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities Type de document : Article/Communication Auteurs : Jingjing Zhou, Auteur ; Ya-Hao Zhang, Auteur ; Ze-Min Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] Citrus (genre)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] feuille (végétation)
[Termes IGN] image hyperspectrale
[Termes IGN] photosynthèse
[Termes IGN] réflectance végétale
[Termes IGN] rendement agricole
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétationRésumé : (auteur) Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards. Numéro de notice : A2021-440 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112160 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112160 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97826
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2160[article]Forest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band / Xing Peng in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Forest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band Type de document : Article/Communication Auteurs : Xing Peng, Auteur ; Xinwu Li, Auteur ; Yanan Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] image 3D
[Termes IGN] image radar moirée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] itération
[Termes IGN] matrice de covariance
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de points
[Termes IGN] Suède
[Termes IGN] tomographie radarRésumé : (auteur) Forest height is an essential input parameter for forest biomass estimation, ecological modeling, and the carbon cycle. Tomographic synthetic aperture radar (TomoSAR), as a three-dimensional imaging technique, has already been successfully used in forest areas to retrieve the forest height. The nonparametric iterative adaptive approach (IAA) has been recently introduced in TomoSAR, achieving a good compromise between high resolution and computing efficiency. However, the performance of the IAA algorithm is significantly degraded in the case of a small tomographic aperture. To overcome this shortcoming, this paper proposes the robust IAA (RIAA) algorithm for SAR tomography. The proposed approach follows the framework of the IAA algorithm, but also considers the noise term in the covariance matrix estimation. By doing so, the condition number of the covariance matrix can be prevented from being too large, improving the robustness of the forest height estimation with the IAA algorithm. A set of simulated experiments was carried out, and the results validated the superiority of the RIAA estimator in the case of a small tomographic aperture. Moreover, a number of fully polarimetric L-band airborne tomographic SAR images acquired from the ESA BioSAR 2008 campaign over the Krycklan Catchment, Northern Sweden, were collected for test purposes. The results showed that the RIAA algorithm performed better in reconstructing the vertical structure of the forest than the IAA algorithm in areas with a small tomographic aperture. Finally, the forest height was estimated by both the RIAA and IAA TomoSAR methods, and the estimation accuracy of the RIAA algorithm was 2.01 m, which is more accurate than the IAA algorithm with 3.25 m. Numéro de notice : A2021-441 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13112147 Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.3390/rs13112147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97828
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2147[article]Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park Type de document : Article/Communication Auteurs : Emma L. Davis, Auteur ; Andrew Trant, Auteur ; Robert G. Way, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbuste
[Termes IGN] Arctique
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] écosystème
[Termes IGN] écotone
[Termes IGN] géostatistique
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parc naturel national
[Termes IGN] régression logistique
[Termes IGN] surveillance de la végétation
[Termes IGN] toundraRésumé : (auteur) Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species. Numéro de notice : A2021-442 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112085 Date de publication en ligne : 26/05/2021 En ligne : https://doi.org/10.3390/rs13112085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97832
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2085[article]