Paru le : 01/07/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2021071 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierA scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : A scalable method to construct compact road networks from GPS trajectories Type de document : Article/Communication Auteurs : Yuejun Guo, Auteur ; Anton Bardera, Auteur ; Marta Fort, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1309 - 1345 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] chevauchement
[Termes IGN] compensation par faisceaux
[Termes IGN] contour
[Termes IGN] généralisation automatique de données
[Termes IGN] méthode heuristique
[Termes IGN] noeud
[Termes IGN] réseau routier
[Termes IGN] segmentation par décomposition-fusion
[Termes IGN] squelettisation
[Termes IGN] trajectographie par GPS
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The automatic generation of road networks from GPS tracks is a challenging problem that has been receiving considerable attention in the last years. Although dozens of methods have been proposed, current techniques suffer from two main shortcomings: the quality of the produced road networks is still far from those produced manually, and the methods are slow, making them not scalable to large inputs. In this paper, we present a fast four-step density-based approach to construct a road network from a set of trajectories. A key aspect of our method is the use of an improved version of the Slide method to adjust trajectories to build a more compact density surface. The network has comparable or better quality than that of state-of-the-art methods and is simpler (includes fewer nodes and edges). Furthermore, we also propose a split-and-merge strategy that allows splitting the data domain into smaller regions that can be processed independently, making the method scalable to large inputs. The performance of our method is evaluated with extensive experiments on urban and hiking data. Numéro de notice : A2021-447 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1832229 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1832229 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97859
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1309 - 1345[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes Type de document : Article/Communication Auteurs : Qingying Yu, Auteur ; Yonglong Luo, Auteur ; Dongxia Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1346 - 1373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] direction
[Termes IGN] données spatiotemporelles
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] mobilité urbaine
[Termes IGN] Pékin (Chine)
[Termes IGN] plan de déplacement urbain
[Termes IGN] reconstruction d'itinéraire ou de trajectoire
[Termes IGN] segmentation
[Termes IGN] trajet (mobilité)
[Termes IGN] vitesse de déplacementRésumé : (auteur) Residents’ trajectory data denote their instantaneous locations along their movements. Mobility research that applies trajectory mining techniques to identify the transportation modes of these movements can inform urban transportation planning. Herein, we propose a five-step approach with information entropy and a multi-layer neural network to identify transportation modes from trajectory data. First, this approach extracts the motion features at each time-stamped location based on foundation geospatial data and spatiotemporal trajectory data, including the speed, acceleration, change of direction, rate of change in direction, and distance from each basic transportation facility. The second step uses information entropy to identify the features that play key roles in identifying transportation modes. The third step weighs each attribute in the feature vector consisting of the selected features and normalizes it to prepare it as input data. The fourth step constructs, trains, and tests a multi-layer neural network with seven-fold cross-validation. The final step includes a post-processing method to optimize the identification result. We use F-measure metric to evaluate the performance. Experimental results on a real trajectory dataset show that the proposed approach can identify the transportation mode at each time-stamped location and outperforms existing transportation-mode identification methods in terms of accuracy and stability. Numéro de notice : A2021-448 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1901904 Date de publication en ligne : 15/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1901904 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97860
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1346 - 1373[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility / Qingqing Chen in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility Type de document : Article/Communication Auteurs : Qingqing Chen, Auteur ; Ate Poorthuis, Auteur Année de publication : 2021 Article en page(s) : pp 1425 - 1448 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] géopositionnement
[Termes IGN] logement
[Termes IGN] mobilité urbaine
[Termes IGN] R (langage)
[Termes IGN] service fondé sur la position
[Termes IGN] SingapourRésumé : (auteur) Identifying meaningful locations, such as home or work, from human mobility data has become an increasingly common prerequisite for geographic research. Although location-based services (LBS) and other mobile technology have rapidly grown in recent years, it can be challenging to infer meaningful places from such data, which – compared to conventional datasets – can be devoid of context. Existing approaches are often developed ad-hoc and can lack transparency and reproducibility. To address this, we introduce an R package for inferring home locations from LBS data. The package implements pre-existing algorithms and provides building blocks to make writing algorithmic ‘recipes’ more convenient. We evaluate this approach by analyzing a de-identified LBS dataset from Singapore that aims to balance ethics and privacy with the research goal of identifying meaningful locations. We show that ensemble approaches, combining multiple algorithms, can be especially valuable in this regard as the resulting patterns of inferred home locations closely correlate with the distribution of residential population. We hope this package, and others like it, will contribute to an increase in use and sharing of comparable algorithms, research code and data. This will increase transparency and reproducibility in mobility analyses and further the ongoing discourse around ethical big data research. Numéro de notice : A2021-449 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1887489 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1887489 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97861
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1425 - 1448[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible The point-descriptor-precedence representation for point configurations and movements / Amna Qayyum in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : The point-descriptor-precedence representation for point configurations and movements Type de document : Article/Communication Auteurs : Amna Qayyum, Auteur ; Bernard De Baets, Auteur ; Muhammad Sulman Baig, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1374 - 1391 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] courbe
[Termes IGN] détection d'événement
[Termes IGN] données spatiotemporelles
[Termes IGN] mesurage de distances
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formes
[Termes IGN] relation topologique
[Termes IGN] trafic routier
[Termes IGN] véhicule automobileRésumé : (auteur) In this paper, we represent (moving) point configurations along a curved directed line qualitatively by means of a system of relational symbols based on two distance descriptors: one representing distance along the curved directed line and the other representing signed orthogonal distance to the curved directed line. The curved directed line represents the direction of the movement of interest. For instance, it could be straight as in the case of driving along a highway or could be curved as in the case of an intersection or a roundabout. Inspired by the Point Calculus, the order between the points on the curved directed line is described by means of a small set of binary relations () acting upon the distance descriptors. We call this representation the Point-Descriptor-Precedence-Static (PDPS) representation at a time point and Point-Descriptor-Precedence-Dynamic (PDPD) representation during a time interval. To illustrate how the proposed approach can be used to represent and analyse curved movements, some basic micro-analysis traffic examples are studied. Finally, we discuss some extensions of our work to highlight the practical benefits of PDP in identifying motion patterns that could be useful in GIS, autonomous vehicles, sports analytics, and gait analysis. Numéro de notice : A2021-453 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1864378 Date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1080/13658816.2020.1864378 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97882
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1374 - 1391[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible