Descripteur
Termes IGN > aménagement > aménagement du territoire > attractivité (aménagement)
attractivité (aménagement) |
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Exploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
[article]
Titre : Exploring the association between street built environment and street vitality using deep learning methods Type de document : Article/Communication Auteurs : Yunqin Li, Auteur ; Nobuyoshi Yabuki, Auteur ; Tomohiro Fukuda, Auteur Année de publication : 2022 Article en page(s) : n° 103656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage profond
[Termes IGN] attractivité (aménagement)
[Termes IGN] bati
[Termes IGN] image Streetview
[Termes IGN] Japon
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] piéton
[Termes IGN] planification urbaine
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression linéaire
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] système d'information géographique
[Termes IGN] urbanisme
[Termes IGN] ville intelligenteRésumé : (auteur) Street vitality has become an essential indicator for evaluating the attractiveness and potential of the sustainable development of urban blocks, and it can be reflected by the type and the frequency of people's pedestrian activities on the street. While it is recognized that street built environment features affect pedestrian behavior and street vitality, quantifying the impact of these characteristics remains inconclusive. This paper proposes an automated deep learning approach to quantitatively explore the association between the street built environment and street vitality. First, we established a deep learning model for street vitality classification for automatic evaluation of street vitality based on the volumes and activities of pedestrians in the street through multiple object tracking and scene classification. Then, we applied semantic segmentation to measure five selected vitality-related street built environment variables. Finally, a linear regression model was applied to evaluate the built environment variables’ significance and effects on street vitality. To verify our method's accuracy and applicability, we selected a commercial complex in Osaka as an illustrative example. The experimental results highlight that street width and transparency have significant positive effects on street vitality. Compared with traditional methods, our approach is feasible, reliable, transferable, and more efficient. Numéro de notice : A2022-266 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2021.103656 Date de publication en ligne : 10/01/2022 En ligne : https://doi.org/10.1016/j.scs.2021.103656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100271
in Sustainable Cities and Society > vol 79 (April 2022) . - n° 103656[article]Geographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)
[article]
Titre : Geographical and temporal huff model calibration using taxi trajectory data Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; Yang Yue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 485 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attractivité (aménagement)
[Termes IGN] étalonnage de modèle
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression géographiquement pondérée
[Termes IGN] Shenzhen
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The Huff model is designed to estimate the probability of shopping centre patronage based on a shopping centre’s attractiveness and the cost of a customer’s travel. In this paper, we attempt to discover some general shopping trends by calibrating the Huff model in Shenzhen, China, and New York, USA, using taxi trajectory GPS data and sharing bikes GPS data. Geographical and Temporal Weighted Regression (GTWR) is used to fit the model, and calibration results are compared with Ordinary Least Squares (OLS) regression, Geographical Weighted Regression (GWR), and Temporal Weighted Regression (TWR). Results show that GTWR gives the highest performance due to significant geographical and temporal variation in the Huff model parameters of attractiveness and travel cost. To explain the geographical variation, we use residential sales’ and rental prices in Shenzhen and New York as a proxy for customers’ wealth in each region. Pearson product-moment correlation results show a medium relationship between localised sales’ and rental prices and the Huff model parameter of attractiveness: that is, customer wealth explains geographic sensitivity to shopping area attractiveness. To explain temporal variation, we use census data in both Shenzhen and New York to provide job profile distributions for each region as a proxy to estimate customers’ spare leisure time. Regression results demonstrate that there is a significant linear relationship between the length of spare time and the parameter of shopping area attractiveness. In particular, we demonstrate that wealthy customers with less spare time are more sensitive to a shopping centre’s attractiveness. We also discover customers’ sensitivities to travel distance are related to their travel mode. In particular, people riding bikes to shopping areas care much more about trip distance compared with people who take taxi. Finally, results show a divergence in behaviours between customers in New York and Shenzhen at weekends. While customers in New York prefer to shop more locally at weekends, customers in Shenzhen care less about trip distance. We provide the GTWR calibration of the Huff model as our theoretical contribution. GTWR extends the Huff model to two dimensions (time and space), so as to analyse the differences of residents’ travel behaviours in different time and locations. We also provide the discoveries of factors affecting urban travel behaviours (wealth and employment) as practical contributions that may help optimise urban transportation design. In particular, the sensitivity of residents to the attraction of shopping areas has a significant positive linear relationship with the housing price and a significant negative linear relationship with the residents’ length of spare time. Numéro de notice : A2021-973 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10707-019-00390-x Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1007/s10707-019-00390-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100392
in Geoinformatica > vol 25 n° 3 (July 2021) . - pp 485 - 512[article]Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam / Sevim Sezi Karayazi in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
[article]
Titre : Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam Type de document : Article/Communication Auteurs : Sevim Sezi Karayazi, Auteur ; Gamze Dane, Auteur ; Bauke de Vries, Auteur Année de publication : 2021 Article en page(s) : n° 198 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Amsterdam (Pays-Bas)
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatiale
[Termes IGN] attractivité (aménagement)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] gestion durable
[Termes IGN] image Flickr
[Termes IGN] musée
[Termes IGN] patrimoine
[Termes IGN] point d'intérêt
[Termes IGN] régression géographiquement pondérée
[Termes IGN] tourismeRésumé : (auteur) Touristic cities are home to historical landmarks and irreplaceable urban heritages. Although tourism brings financial advantages, mass tourism creates pressure on historical cities. Therefore, “attractiveness” is one of the key elements to explain tourism dynamics. User-contributed and geospatial data provide an evidence-based understanding of people’s responses to these places. In this article, the combination of multisource information about national monuments, supporting products (i.e., attractions, museums), and geospatial data are utilized to understand attractive heritage locations and the factors that make them attractive. We retrieved geotagged photographs from the Flickr API, then employed density-based spatial clustering of applications with noise (DBSCAN) algorithm to find clusters. Then combined the clusters with Amsterdam heritage data and processed the combined data with ordinary least square (OLS) and geographically weighted regression (GWR) to identify heritage attractiveness and relevance of supporting products in Amsterdam. The results show that understanding the attractiveness of heritages according to their types and supporting products in the surrounding built environment provides insights to increase unattractive heritages’ attractiveness. That may help diminish the burden of tourism in overly visited locations. The combination of less attractive heritage with strong influential supporting products could pave the way for more sustainable tourism in Amsterdam. Numéro de notice : A2021-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040198 Date de publication en ligne : 25/03/2021 En ligne : https://doi.org/10.3390/ijgi10040198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97424
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 198[article]SLEUTH* : un modèle d’expansion urbaine scénario-dépendant / Omar Doukari in Revue internationale de géomatique, vol 26 n° 1 (janvier - mars 2016)
[article]
Titre : SLEUTH* : un modèle d’expansion urbaine scénario-dépendant Type de document : Article/Communication Auteurs : Omar Doukari, Auteur ; Rahim Aguejdad, Auteur ; Thomas Houet, Auteur Année de publication : 2016 Article en page(s) : pp 7 - 32 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aménagement du territoire
[Termes IGN] attractivité (aménagement)
[Termes IGN] automate cellulaire
[Termes IGN] croissance urbaine
[Termes IGN] dynamique spatiale
[Termes IGN] étalement urbain
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] prospectiveRésumé : (Auteur) La modélisation prospective permet d'éclairer les réflexions des acteurs locaux en leur proposant un panel de futurs et d'alternatives possibles en matière de planification et d'aménagement du territoire. Or, le modélisateur est souvent confronté aux limites des outils de simulation existants qui, calibrés à partir de données passées, sont particulièrement non adaptés à la spatialisation de scénarios prospectifs en rupture avec les tendances passées. L'objectif de cet article est de présenter un modèle de simulation spatiale (SLEUTH*) dédié à la projection de scénarios contrastés et prédéfinis d’expansion urbaine. SLEUTH* constitue une version « scénario-dépendante » issue de la modification du modèle SLEUTH. Ce dernier, dont le fonctionnement est basé sur un automate cellulaire, est un modèle empirique, dynamique et spatialement explicite. Le choix du modèle SLEUTH tient à sa capacité à simuler quatre formes d’expansion urbaine : expansion par diffusion, en continuité de l’urbain existant, le long des routes et par création de nouveaux centres. Les améliorations apportées permettent aux utilisateurs : (i) une maîtrise de la quantité de changement de manière exogène au modèle et indépendante des tendances passées ; (ii) une maîtrise des formes urbaines en offrant à l’utilisateur la possibilité de spécifier les pourcentages contributifs de chacune des formes d'urbanisation adaptées à chaque scénario ; et (iii) l’intégration d’un facteur additionnel de localisation des changements, en l’occurrence l’attractivité du territoire ou le prix des loyers. De plus, SLEUTH* est conçu pour exécuter de façon automatique la spatialisation dynamique d'un scénario prospectif décliné en sous-périodes présentant des dynamiques spatiales variables au cours du temps. Numéro de notice : A2016-322 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.3166/RIG.26.7-32 Date de publication en ligne : 11/04/2016 En ligne : https://doi.org/10.3166/RIG.26.7-32 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80944
in Revue internationale de géomatique > vol 26 n° 1 (janvier - mars 2016) . - pp 7 - 32[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 047-2016011 RAB Revue Centre de documentation En réserve L003 Disponible