[n° ou bulletin]
est un bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences / International society for photogrammetry and remote sensing (1980 -) (2012 - )
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierFast weakly supervised detection of railway-related infrastructures in lidar acquisitions / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Fast weakly supervised detection of railway-related infrastructures in lidar acquisitions Type de document : Article/Communication Auteurs : Stéphane Guinard , Auteur ; Jean-Philippe Riant, Auteur ; Jean-Christophe Michelin , Auteur ; Sofia Costa d’Aguiar, Auteur Année de publication : 2021 Conférence : ISPRS 2021, Commission 2, 24th ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Annals Commission 2 Article en page(s) : pp 27 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme Cut Pursuit
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] réseau ferroviaire
[Termes IGN] segmentationRésumé : (auteur) Railroad environments are peculiar, as they combine dense urban areas, along with rural parts. They also display a very specific spatial organization. In order to monitor a railway network a at country scale, LiDAR sensors can be equipped on a running train, performing a full acquisition of the network. Then most processing steps are manually done. In this paper, we propose to improve performances and production flow by creating a classification of the acquired data. However, there exists no public benchmark, and little work on LiDAR data classification in railroad environments. Thus, we propose a weakly supervised method for the pointwise classification of such data. We show that our method can be improved by using the l0-cut pursuit algorithm and regularize the noisy pointwise classification on the produced segmentation. As production is envisaged in our context, we designed our implementation such that it is computationally efficient. We evaluate our results against a manual classification, and show that our method can reach a FScore of 0.96 with just a few samples of each class. Numéro de notice : A2021-615 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-27-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-27-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97953
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 27 - 34[article]Towards efficient indoor/outdoor registration using planar polygons / Rahima Djahel in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Towards efficient indoor/outdoor registration using planar polygons Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Année de publication : 2021 Projets : BIOM / Vallet, Bruno Article en page(s) : pp 51 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] appariement de primitives
[Termes IGN] bati
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] géométrie euclidienne
[Termes IGN] polygone
[Termes IGN] scène intérieure
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) The registration of indoor and outdoor scans with a precision reaching the level of geometric noise represents a major challenge for Indoor/Outdoor building modeling. The basic idea of the contribution presented in this paper consists in extracting planar polygons from indoor and outdoor LiDAR scans, and then matching them. In order to cope with the very small overlap between indoor and outdoor scans of the same building, we propose to start by extracting points lying in the buildings’ interior from the outdoor scans as points where the laser ray crosses detected façades. Since, within a building environment, most of the objects are bounded by a planar surface, we propose a new registration algorithm that matches planar polygons by clustering polygons according to their normal direction, then by their offset in the normal direction. We use this clustering to find possible polygon correspondences (hypotheses) and estimate the optimal transformation for each hypothesis. Finally, a quality criteria is computed for each hypothesis in order to select the best one. To demonstrate the accuracy of our algorithm, we tested it on real data with a static indoor acquisition and a dynamic (Mobile Laser Scanning) outdoor acquisition. Numéro de notice : A2021-490 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-51-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-51-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97955
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 51 - 58[article]Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image / Genki Takahashi in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image Type de document : Article/Communication Auteurs : Genki Takahashi, Auteur ; H. Masuda, Auteur Année de publication : 2021 Article en page(s) : pp 67 - 74 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement d'arbres
[Termes IGN] apprentissage automatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Tokyo (Japon)
[Termes IGN] zone urbaineRésumé : (auteur) Efficient management of roadside trees for local governments is important. Mobile Mapping System (MMS) equipped with a high-density LiDAR scanner has the possibility to be applied to estimate DBH of roadside trees using point clouds. In this study, we propose a method for detecting roadside trees and estimating their DBHs automatically from MMS point clouds. In our method, point clouds captured using the MMS are mapped on a 2D image plane, and they are converted into a wireframe model by connecting adjacent points. Then, geometric features are calculated for each point in the wireframe model. Tree points are detected using a machine learning technique. The DBH of each tree is calculated using vertically aligned circles extracted from the wireframe model. Our method allows robustly calculating the DBH even if there is a hump at breast height. We evaluated our method using actual MMS data measured in an urban area in Tokyo. Our method achieved a high extraction performance of 100 percent of precision and 95.1 percent of recall for 102 roadside trees. The average accuracy of the DBH was 2.0 cm. These results indicate that our method is useful for the efficient management of roadside trees. Numéro de notice : A2021-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-67-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-67-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97956
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 67 - 74[article]Marrying deep learning and data fusion for accurate semantic labeling of Sentinel-2 images / Guillemette Fonteix in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Marrying deep learning and data fusion for accurate semantic labeling of Sentinel-2 images Type de document : Article/Communication Auteurs : Guillemette Fonteix, Auteur ; M. Swaine, Auteur ; M. Leras, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 107 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carte de confiance
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelleRésumé : (auteur) The understanding of the Earth through global land monitoring from satellite images paves the way towards many applications including flight simulations, urban management and telecommunications. The twin satellites from the Sentinel-2 mission developed by the European Space Agency (ESA) provide 13 spectral bands with a high observation frequency worldwide. In this paper, we present a novel multi-temporal approach for land-cover classification of Sentinel-2 images whereby a time-series of images is classified using fully convolutional network U-Net models and then coupled by a developed probabilistic algorithm. The proposed pipeline further includes an automatic quality control and correction step whereby an external source can be introduced in order to validate and correct the deep learning classification. The final step consists of adjusting the combined predictions to the cloud-free mosaic built from Sentinel-2 L2A images in order for the classification to more closely match the reference mosaic image. Numéro de notice : A2021-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2021-101-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-3-2021-101-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97957
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 101 - 107[article]Forest cover mapping and Pinus species classification using very high-resolution satellite images and random forest / Laura Alonso-Martinez in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Forest cover mapping and Pinus species classification using very high-resolution satellite images and random forest Type de document : Article/Communication Auteurs : Laura Alonso-Martinez, Auteur ; J. Picos, Auteur ; Julia Armesto, Auteur Année de publication : 2021 Article en page(s) : pp 203 - 210 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert forestier
[Termes IGN] Espagne
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Pinus pinaster
[Termes IGN] Pinus radiata
[Termes IGN] Pinus sylvestris
[Termes IGN] ressources forestières
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Advances in remote sensing technologies are generating new perspectives concerning the role of and methods used for National Forestry Inventories (NFIs). The increase in computation capabilities over the last several decades and the development of new statistical techniques have allowed for the automation of forest resource map generation through image analysis techniques and machine learning algorithms. The availability of large-scale data and the high temporal resolution that satellite platforms provide mean that it is possible to obtain updated information about forest resources at the stand level, thus increasing the quality of the spatial information. However, photointerpretation of satellite and aerial images is still the most common way that remote sensing information is used for NFIs or forest management purposes. This study describes a methodology that automatically maps the main forest covers in Galicia (Eucalyptus spp., conifers and broadleaves) using Worldview-2 and the random forest classifier. Furthermore, the method also evaluates the separate mapping of the three most abundant Pinus tree species in Galicia (Pinus pinaster, Pinus radiata and Pinus sylvestris). According to the results, Worldview-2 multispectral images allow for the efficient differentiation between the main forest classes that are present in Galicia with a very high degree of accuracy (91%) and ample spatial detail. Pinus species can also be efficiently differentiated (83%). Numéro de notice : A2021-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2021-203-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-3-2021-203-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97958
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 203 - 210[article]