Paru le : 01/08/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA hybrid data model for dynamic GIS: application to marine geomorphological dynamics / Younes Hamdani in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : A hybrid data model for dynamic GIS: application to marine geomorphological dynamics Type de document : Article/Communication Auteurs : Younes Hamdani, Auteur ; Rémy Thibaud, Auteur ; Christophe Claramunt, Auteur Année de publication : 2021 Article en page(s) : pp 1475 - 1499 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] base de données spatiotemporelles
[Termes IGN] érosion
[Termes IGN] interface utilisateur
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle dynamique
[Termes IGN] PostGIS
[Termes IGN] PostgreSQL
[Termes IGN] relief sous-marin
[Termes IGN] SIG dynamiqueRésumé : (auteur) The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model. Numéro de notice : A2021-547 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1829628 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1829628 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98059
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1475 - 1499[article]Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning / Kim Lowell in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning Type de document : Article/Communication Auteurs : Kim Lowell, Auteur ; Brian Calder, Auteur ; Anthony Lyons, Auteur Année de publication : 2021 Article en page(s) : pp 1592 - 1610 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] bathymétrie laser
[Termes IGN] données lidar
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] hydrographie
[Termes IGN] lever bathymétrique
[Termes IGN] semis de pointsRésumé : (auteur) The goal of this work was to evaluate if routinely collected but seldom used airborne lidar metadata – ‘point attribute data’ (PAD) – analyzed using machine learning/artificial intelligence can improve extraction of shallow-water (less than 20 m) bathymetry from lidar point clouds. Extreme gradient boosting (XGB) models relating PAD to an existing bathymetry/not bathymetry classification were fitted and evaluated for four areas near the Florida Keys. The PAD examined include ‘pulse specific’ information such as the return intensity and PAD describing flight path consistency. The R2 values for the XGB models were between 0.34 and 0.74. Global classification accuracies were above 80% although this reflected a sometimes extreme Bathy/NotBathy imbalance that inflated global accuracy. This imbalance was mitigated by employing a probability decision threshold (PDT) that equalizes the true positive (Bathy) and true negative (NotBathy) rates. It was concluded that 1) the strength of the bathymetric signal in the PAD should be sufficient to increase accuracy of density-based lidar point cloud bathymetry extraction methods and 2) ML can successfully model the relationship between the PAD and the Bathy/NotBathy classification. A method is also presented to examine the spatial and feature-space distribution of errors that will facilitate quality assurance and continuous improvement. Numéro de notice : A2021-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1867147 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/13658816.2020.1867147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98061
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1592 - 1610[article]Pattern-based identification and mapping of landscape types using multi-thematic data / Jakub Nowosad in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Pattern-based identification and mapping of landscape types using multi-thematic data Type de document : Article/Communication Auteurs : Jakub Nowosad, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2021 Article en page(s) : pp 1634 - 1649 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] gestion des ressources
[Termes IGN] gestion foncière
[Termes IGN] matrice de co-occurrence
[Termes IGN] modèle mathématique
[Termes IGN] modélisation spatiale
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] régionalisation (segmentation)
[Termes IGN] regroupement de données
[Termes IGN] segmentation en régionsRésumé : (auteur) Categorical maps of landscape types (LTs) are useful abstractions that simplify spatial and thematic complexity of natural landscapes, thus facilitating land resources management. A local landscape arises from a fusion of patterns of natural themes (such as land cover, landforms, etc.), which makes an unsupervised identification and mapping of LTs difficult. This paper introduces the integrated co-occurrence matrix (INCOMA) – a signature for numerical representation of multi-thematic categorical patterns. INCOMA enables an unsupervised identification and mapping of LTs. The region is tessellated into a large number of local landscapes – patterns of themes over small square-shaped neighborhoods. With local landscapes represented by INCOMA signatures and with dissimilarities between local landscapes calculated using the Jensen-Shannon Divergence (JSD), LTs can be identified and mapped using standard clustering or segmentation techniques. Resultant LTs are typically heterogeneous with respect to categories of contributing themes reflecting the human perception of a landscape. LTs calculated by INCOMA are more faithful abstractions of actual landscapes than LTs obtained by the current method of choice – the map overlay. The concept of INCOMA is described, and its application is demonstrated by an unsupervised mapping of LT zones in Europe based on combined patterns of land cover and landforms. Numéro de notice : A2021-549 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1893324 Date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1893324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98064
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1634 - 1649[article]